Maximizing your company's strengths to help unlock hidden value.

PI Solutions

TECHNOLOGY TRENDS AND CHALLENGES FOR SUPERCONDUCTOR-BASED SHIP PROPULSION

PI INTEGRAL SOLUTIONS LIMITED - GERMANY

Manuel La Rosa Betancourt

Bartomev Massuti Ballester

Ryan O' Regan

THEVA DÜNNSCHICHTTECHNIK GMBH - GERMANY

Dr. Markus Bauer

Outline

Global trends and drivers for electric ship propulsion

State-of-the-art high-power electric propulsion systems

2G HTS materials, tape production and economies of scale

Trends and challenges for HTS-based propulsion systems

Disruptive approaches on all-electric ship propulsion

Conclusions

Global trends & drivers for electric ship propulsion

Trends & drivers

High power propulsion systems for travelling large distances

Highly efficient subsystems for long mission duration

Noise and electromagnetic signature reduction

State-of-the-art high-power electric propulsion systems

State-of-the-art high-power electric propulsion systems

PI Solutions

2G HTS materials, tape production and economies of scale

Operating Temperature Range for HTS Applications

PI Solutions

Transformer

[3] Remastered by PI Integral Solutions. Based on superconductors and applications Fujikura Ltd #UDT2019

🕩 #UDT2019

2G HTS materials, tape production and economies of scale

TYPE 2G HTS

THEVA

2G HTS materials, tape production and economies of scale

TYPE 2G HTS

Tunable performance

Tilt leads to textured overgrowth of precipitates and misoriented regions

- J_c is thickness independent
- Very high I_c possible

Properties Main

PI Solutions

THEVA

2G HTS materials, tape production and economies of scale

TAPE ARCHITECTURE

THEVA

- Cost efficient production
- Robust process allowing high yield
- Implementation of industrial standards
- Proof of production: high quality tape

#UDT2019

Technologies

Production

 $^{\odot}$ Copyright THEVA Dünnschichttechnik GmbH

Performance

2G HTS materials, tape production and economies of scale

Tunable performance

a specialty of our process

TAPE ARCHITECTURE

THEVA

2G HTS materials, tape production and economies of scale

TAPE ARCHITECTURE

- Cu stabilization according to application
- Standard width 12 mm
- Smaller width samples
 availabe

© Copyright THEVA Dünnschichttechnik GmbH

© Theva Dünnschichttechnik GmbH.

Capabilities Production

ECONOMIES OF SCALE

© Copyright SuNAM Co., Ltd. [4] Venkat Selvamanickam, University of Houston, Recent Advances in High Temperature Superconductors and Potential Applications (2014)

#UDT2019

2G HTS materials, tape production and economies of scale

ECONOMIES OF SCALE

Trends and challenges for HTS-based propulsion systems

Trends and challenges for HTS-based propulsion systems

SUPERCONDUCTING MAGNETIC ENERGY STORAGE

PI Solutions

[6] © 2018 Copyright PI Integral Solutions based on P. F. Ribeiro, B. K. Johnson, M. L. Crow, A. Arsoy and Y. Liu, "Energy Storage Systems for Advanced Power Applications," Proceedings of the IEEE, vol. 89, no. 12, 2001

Trends and challenges for HTS-based propulsion systems

High power electric propulsion

Higher flexibility on the location of the electric motors

More compact designs saving weight and volume

4.7 MW HTS machine from Siemens (25 % weight reduction)

36 MW HTS motor from Northrop Grumman (50 % weight reduction)

Main Characteristics

Characteristics	Kawasaki	Siemens	US Navy
Max. power	3 MW	4.7 MW	36.5 MW
Nominal voltage	6.6 kV	3.1 kV	6.6 kV
Nominal rotational speed	160 rpm	120 – 190 rpm	120 rpm
Total weight	-	-	75 tonnes
Volume	D 1.4 m x L 2.8 m	-	D 2.1 m x L3.0m

T. Yanamoto, M. Izumi, K. Umemoto, T. Oryu, Y. Murase y M. Kawamura, «Load test of 3-MW HTS Motor for Ship Propulsion,» IEEE Transactions on Applied Superconductivity, vol. 27, n° 8, 2017. B. Gamble, G. Snitchler y T. McDonald, «Full power test of a 36.5 MW HTS propulsion motor,» IEEE transactions on applied superconductivity, vol. 21, n° 3, 2011.

Trends and challenges for HTS-based propulsion systems

PI Solutions

[2] © 2018 Copyright PI Integral Solutions based on Overview HTS Machines Marine RPM vs. Power, M Park, Changwon University. MT-22

Trends and challenges for HTS-based propulsion systems

Full superconducting synchronous motor

Double-Helix (DH) coils

Flux Pump System

(FPS)

and the second		
Output power	35	MW
Phase voltage	3000	V
Power factor	0.87	
Power angle	60	
Phase current (RMS)	4520	А
Synchronous reactance	0.468	
Motor line frequency	2	Hz
Motor rated torque	2.84E+06	N-m
Air gap shear stress	1550	kN/m2
Cold mass diameter	0.81	m
Cold mass length	3.4	m
Estimated motor mass with cryostat	15	tonnes
Estimated power density	2.3	kW/kg

Fig. 10. 24-element drum type HTS flux pump connected to a double helix rotor (1). (2) Torque tube support for coils. (3) Stationary core for flux pump excitation magnet. (4) Externally controlled excitation coil (Permanent magnets are an option also.) (5) Rotating iron core of flux pump assembly. (6) Rotating HTS flux gates (thin cylinders, shown in green). Polarity of induced voltage shown and the elements are connected in parallel (not shown). (7) Coil lead (+) connected to flux gate. Other lead (-) is connected to the parallel connection (-) between flux gates (not shown) [15].

Higher power density

Lower heat dissipation

🕩 #UDT2019

Disruptive approaches on all-electric ship propulsion

1 9 , Sweden	Туре	Superconducting magnets of internal magnetic field type containing 6 coils arranged on a circle
	→ Coil	
	Quantity	6 pairs
	Magnetic field at bore center	4.0 teslas
	Effective magnetic field length	3.000 mm
	Cooling method	Cooling by immersion in liquid helium
	→ Cryostat (14)	
	Diameter	1.850 mm
	Overall length	5.400 mm
	Bore diameter at normal temperature (15)	260 mm
	Weight	15 tons or less
	Heat invasion	7 watts or less

These were the performance figures provided to the manufacturers by the committee for the superconducting magnet design.

CONCLUSIONS

PROBLEM AND CHALLENGES FOR FUTURE NAVY

Efficiency of high power propulsion systems Mass and volume reduction of power generation and distribution systems

Noise and electromagnetic signature of vessels

2G HTS AS KEY ENABLING TECHNOLOGY FOR ELECTRIC NAVAL PROPULSION

Power generation Power distribution

Electric propulsion

Electric propulsion

4

STATUS QUO OF 2G HTS TECHNOLOGY

Constant increase in the production of basic elements Growing number of applications for HTS

DISRUPTIVE APPROACHES ON ALL-ELECTRIC SHIP PROPULSION

MHD propulsion No rotating parts Reduction of noise and vibrations

🕩 #UDT2019

PI Solutions

Thanks for your attention

References

- 1. J. Markowski and I. Pielecha, "The potential of fuel cells as a drive source of maritime transport," *IOP Conf. Series: Earth and Environmental Science 214,* 2019
- 2. © 2018 Copyright PI Integral Solutions based on Overview HTS Machines Marine RPM vs. Power, M Park, Changwon University. MT-22
- 3. Remastered by PI Integral Solutions Based on superconductors and applications Fujikura Ltd
- 4. Superconductivity Centennial Conference Working around HTS Thickness Limitations towards 1000+ A/cm Class Coated Conductors
- 5. Venkat Selvamanickam, University of Houston, Recent Advances in High Temperature Superconductors and Potential Applications (2014)
- 6. © 2017 Copyright PI Integral Solutions based on Venkat Selvamanickam, (2014): Recent Advances in High Temperature Superconductors and Potential Applications, University of Houston
- 7. © 2018 Copyright PI Integral Solutions based on P. F. Ribeiro, B. K. Johnson, M. L. Crow, A. Arsoy and Y. Liu, "Energy Storage Systems for Advanced Power Applications," Proceedings of the IEEE, vol. 89, no. 12, 2001
- 8. © 2018 Copyright PI Integral Solutions based on C. E. Bruzek, N. Lallouet, E. Marzahn, and K. Allweins,"Superconducting cables on board a ship A fiction or a reality?", Seminar on ship building, The Netherlands, 2nd October 2012
- 9. © 2019 Copyright PI Integral Solutions based on

CONTACT

PI INTEGRAL SOLUTIONS LIMITED, Moltkestr. 127, 50674 Köln, Germany

Manuel La Rosa Betancourt

manuel.la-rosa@pintegralsolutions.de

THEVA DÜNNSCHICHTTECHNIK GMBH, Rote-Kreuz Str. 8, 85737 Ismaning, Germany

Dr. Markus Bauer

bauer@theva.com

PI Solutions

Manuel La Rosa Betancourt Founder & Director PI INTEGRAL SOLUTIONS LIMITED

Zweigniederlassung Köln

Moltkestr. 127, 50674 Köln, Deutschland

manuel.la-rosa@pintegralsolutions.de

 \sim

www.pintegralsolutions.de

