

Evolution of VLF and LF Systems

How to Improve Legacy VLF/LF Communication Technology

Dipl.-Ing. MBA Christian Gast LtCdr (Res. DEU NAVY) Technology

Evolution of VLF and LF Systems / 2 / 14.05.2019

Introduction

Evolution of VLF and LF Systems / 3 / 14.05.2019

VLF / LF Belongs to Submarines

Submarines operate:

- Alone
 - Cut off from outer world
- All over the world
 - Including pole regions
- As covert as possible
 - Submerged
 - Short period of being surfaced

VLF / LF Wave Propagation

Evolution of VLF and LF Systems / 5 / 14.05.2019

The Physical Environment Lead to Various Advantages for **VLF/LF Communication**

- Very low frequency
 - VLF: 3 30 kHz
 - LF: 30 300 kHz
- The earth as a cavity resonator

Cit. J. R. Johler, Propagation of the Low-Frequency Radio Signal, IRE 1961, P.405

VLF/ LF Advantages

- Stable energy level
- Robust communication
- Under water reception

VLF / LF Disadvantages

- Low bandwidth
- Large antennas for VLF transmission
- On naval vessels reception only

VLF / LF Transmission

Evolution of VLF and LF Systems / 7 / 14.05.2019

Requirements for VLF/LF Transmitters

- Level of efficiency
 - Energy saving
 - Cooling
 - Infrastructure
- Reliability
 - Maintenance / Service
 - High MTBF
- Robustness

- Need for solid state amplifiers
 - Amplifier architecture with switched H-bridge technology
 - Extreme high level of efficiency
 - Low source resistance (<< 1 Ohms)

Hagenuk Marinekommunikation

Characteristic of Current VLF/LF Antennas

- Radiation power: 100 kw 1000 kW
- Wavelength: 10 km 100 km

- Also large antennas are electrically short
- Electrical short antennas stand in contrast to high level of efficiency
- Limited Bandwidth of antenna

- Limitation in data rate
 - Bandwidth: 50 Hz to 120 Hz
 - − 4-MSK Signal \rightarrow 200 Bit/s

High Efficiency Transmitters on Current VLF/LF Antennas

- Extreme impact of VLF Antenna characteristic on transmitter
 - Influence of antennas narrowband characteristic
 - Compared to classical 50 Ohms transmitters
- Extreme impact of narrowband characteristic
- Linear distortion
 - Distortion of transmit signal
 - Limitation in Bandwidth
 - Response of transmitted signal on the air is limited

Double Tuned Matching Networks

- Tuning out capacitive reactance from electrically short antennas.
- Transformation of the antenna impedance to a value suitable for the transmitter.
- Increase the usable bandwidth.
- Suppress harmonics and out of band emissions.

Independent adjustment of coupling

Cit. US patent 9,571,132 by Dave Hershberger, Continental Electronics

Haaenu A company of the ATLAS ELEKTRONIK Group

Linear Pre-Distortion

- Linear pre distortion
 - Digital equalizer → add inverse antenna system response to the signal
 - Equalization flattens both:
 - Amplitude response
 - Group delay
 - Better signal quality over a wider bandwidth
- Legacy matcher
 - bandwidth 308 Hz
- Wideband matcher
 - bandwidth 1110 Hz

Tradeoffs for Wider Bandwidth

- Transmitter must be sized appropriately
- More reactive power required
- Power supply does NOT increase in proportion to reactive power
- Transmitter efficiency remains high
- Tuning components must support higher currents and voltages

VLF / LF Reception

Evolution of VLF and LF Systems / 14 / 14.05.2019

Three Ways for VLF/LF Reception

- Different ways of VLF reception
 - Buoyant wire
 - Multifunctional antenna
 - Fin mounted loop antenna
- Electrically short antennas

- Antennas can not be matched to wavelength
- Mismatched Antennas have a wideband characteristic
- **Requirements for Antenna:**
 - High SNR despite extremely low field strength
- Requirements for Receiver:
 - Optimized channel filter and gain control

Easy implementation for VLF wideband reception in current systems

Conclusion

Evolution of VLF and LF Systems / 16 / 14.05.2019

Operational Advantages Through VLF Wideband Technology

Combination of 3 technological approaches

- Solid state amplifiers
- Adaptive equalization
- New matching network topology

Data rate to be improved by factor 3 - 10

- Depending on
 - antenna system
 - infrastructure
 - high voltage robustness

Approx.:

- 600 Bit/s – 2 kBit/s

Legacy Data Rate 200 Bit/s - 1h reception \rightarrow 720 kBit Enhanced Data Rate 800 Bit/s - 1h reception \rightarrow 2.88 MBit - 15 min \rightarrow 720 kBit

© thyssenkrupp Marine Systems

Contact

Hagenuk Marinekommunikation GmbH
Dipl.-Ing. MBA Christian Gast
Hamburger Chaussee 25
24220 Flintbek
Germany

www.hmk.atlas-elektronik.com Christian.Gast@hmk.atlas-elektronik.com

Thank you for your kind attention !

tion!

Hagenuk Marinekommunikation