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◼ The false alarm rate (FAR) represents a crucial aspect in all active sonar applications.

◼ Every contact is represented in the detection display.

◼ Under different circumstances it results in an enormous number of false contacts.

→ Tracking algorithms might be unable to

deal with the large number of contacts.

→ An operator is not able to identify

true target contacts.

Aim: Reduce number of false contacts 

without losing target contacts.

Motivation
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Application

◼ The False Alarm Reduction is investigated for Active Diver Detection Sonar Data.

◼ Several Datasets recorded with a Cerberus DDS are provided by the WTD 71.

◼ Raw Data is processed with experimental active signal processing in MATLAB.

◼ All results are based on the transmission of Frequency Modulated (FM) Pulses.

Cerberus Diver Detection Sonars (left Mod1, right Mod2)



5

Matthias Buß

False Alarm Reduction for Active Sonars 

using Deep Learning Architectures

PROPOSED SOLUTION FOR 

FALSE ALARM REDUCTION
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Modification of the Signal Processing

◼ Standard Active Signal Processing Chain:

◼ Modified Active Signal Processing Chain for False Alarm Reduction:

Feature Extr. & 

Classification
DetectionNormalisation
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Tracking
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FEATURE EXTRACTION AND 

CLASSIFICATION
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Feature Extraction and Classification

◼ Two different machine learning techniques are considered:

1. Classical Machine Learning:

→ Machine Learning based on hand-crafted extracted features.

2. Convolutional Neural Networks:

→ Machine Learning techniques that automatically extract features for input 

signals/images. No feature engineering required.
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Classification with Feed Forward Neural Network (FNN)
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Inputs:

Feature Vector for Contact 𝑛:

𝐱𝑛 ∈ ℝ53×1

One Hidden Layer:

20 Neurons

Activation: hyperbolic tangent

Output Layer:

Binary Classification 

→ 2 Neurons

Softmax Function:

Probability for belonging to class

→ Diver Contact

→ False Alarm 
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Feature Extraction and Classification

◼ Two different machine learning techniques are considered:

1. Classical Machine Learning:

→ Machine Learning based on hand-crafted extracted features.

2. Convolutional Neural Networks:

→ Machine Learning techniques that automatically extract features for input 

signals/images. No feature engineering required.
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Two different types of Networks are considered

1. Shallow Convolutional Neural Network trained from scratch.

2. Pre-trained deep networks that are originally trained for distinguishing objects 

in R-G-B images.
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Convolutional Neural Networks

Structure of Shallow CNN trained from scratch

Kernel 1

Kernel 2

Kernel 100
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Convolutional Neural Networks

Structure of Shallow CNN trained from scratch
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Convolutional Neural Networks

Structure of Shallow CNN trained from scratch

Final

Feature Map
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Two different types of Networks are considered

1. Shallow Convolutional Neural Network trained from scratch.

2. Pre-trained deep networks that are originally trained for classifying objects 

in R-G-B images.
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Convolutional Neural Networks

Transfer Learning of pre-trained Deep Networks

◼ Many different pre-trained Networks are available in MATLAB / Python / etc.

◼ These are originally trained for distinguishing 

1000 different objects in R-G-B images.

◼ Nine networks that are firstly introduced in the

ImageNet Large Scale Visual Recognition 

Challenges are considered:

– AlexNet (5 Convolutional Layers)

– GoogLeNet (57 Convolutional Layers)

– Inception v3 (94 Convolutional Layers)

– ResNet-18, ResNet-50 and ResNet-101 (20, 53 and 104 Convolutional Layers)

– SqueezeNet (26 Convolutional Layers)

– VGG-16 and VGG-19 (13 and 16 Convolutional Layers)

Reference: Krizhevsky, A. et al; ImageNet Classification with    

Deep Convolutional Neural Networks
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Convolutional Neural Networks

Transfer Learning of pre-trained Deep Networks

◼ Comparison of Shallow CNN and VGG-16.

Shallow CNN

VGG-16
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Convolutional Neural Networks

Transfer Learning of pre-trained Deep Networks

◼ Two steps are required for transfer learning:

224×224×3 for GoogLeNet, ResNet, VGG

1. Resample input images from 142×11×1 → 227×227×3 for AlexNet, SqueezeNet

299×299×3 for Inception v3

2. Replace Output Layer of Fully Connected Layer.
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Convolutional Neural Networks

Transfer Learning of pre-trained Deep Networks

◼ Two steps are required for transfer learning:

224×224×3 for GoogLeNet, ResNet, VGG

1. Resample input images from 142×11×1 → 227×227×3 for AlexNet, SqueezeNet

299×299×3 for Inception v3

2. Replace Output Layer of Fully Connected Layer.
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DATA LABELLING
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Data Labelling

◼ Contacts belonging to Track of the diver are labelled as “Diver Contact”.

Tracking Results Positions of Diver Contacts
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Data Labelling

◼ All reamaining contacts are labelled as “False Alarm”.

Positions of False Alarms
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PERFORMANCE CRITERION
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Performance Criterion

Receiver-Operating-Characteristic (ROC) Curves
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Performance Criterion

Receiver-Operating-Characteristic (ROC) Curves

TPR = 1.00
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Performance Criterion

Receiver-Operating-Characteristic (ROC) Curves

TPR = 0.90
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Performance Criterion

Receiver-Operating-Characteristic (ROC) Curves

TPR = 0.80



28

Matthias Buß

False Alarm Reduction for Active Sonars 

using Deep Learning Architectures

Performance Criterion

Receiver-Operating-Characteristic (ROC) Curves

TPR = 0.50



29

Matthias Buß

False Alarm Reduction for Active Sonars 

using Deep Learning Architectures

Performance Criterion

Receiver-Operating-Characteristic (ROC) Curves

TPR = 0.10
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Performance Criterion

Receiver-Operating-Characteristic (ROC) Curves

TPR = 0.00
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IDEAL CASE
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Ideal ROC Curve

TPR = 1.00, FPR = 1.00
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Ideal ROC Curve

◼ All Diver Contacts and 

No False Alarms Remain.

◼ Ideal Case! 

◼ Almost impossible to achieve!

TPR = 1.00, FPR = 0.00
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CLASSIFICATION RESULTS
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Considered Datasets

◼ Three datasets recorded in different environments are merged to a big training dataset.

◼ Three similar datasets are used as test datasets.

◼ All Datasets are highly unbalanced!

𝑫𝐓𝐫𝐚𝐢𝐧𝑬𝟏 𝑫𝐓𝐫𝐚𝐢𝐧𝑬𝟐 𝑫𝐓𝐫𝐚𝐢𝐧𝑬𝟑

Diver Contacts 255 136 320

False Alarms 21831 21141 3761

𝑫𝐓𝐫𝐚𝐢𝐧

711

46733

𝑫𝐓𝐞𝐬𝐭𝑬𝟏 𝑫𝐓𝐞𝐬𝐭𝑬𝟐 𝑫𝐓𝐞𝐬𝐭𝑬𝟑

Diver Contacts 356 194 187

False Alarms 37843 22484 2484
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Classification Results

ROC Curves

◼ Algorithms tested with dataset DTestE2



37

Matthias Buß

False Alarm Reduction for Active Sonars 

using Deep Learning Architectures

Classification Results

Performance for all Test Datasets
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Classification Results

Performance Criteria for False Alarm Reduction

◼ ROC Curve for testing the FNN with dataset DTestE2

78% of False Alarms reduced compared

to the Standard Acitve Signal Processing
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Classification Results

Performance Criteria for False Alarm Reduction
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PPI BEFORE AND AFTER 

FALSE ALARM REDUCTION
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Classification Results

◼ Test Dataset DTestE1

– Detection with low Threshold

– 356 Diver Contacts

– 37843 False Alarms

TPR = 1.00, FPR = 1.00
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Classification Results

◼ Test Dataset DTestE1

– Detection with higher Threshold

– 320 Diver Contacts

– 5301 False Alarms

TPR = 0.90, FPR = 0.14
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Classification Results

◼ Test Dataset DTestE1

– Contacts after Classification

– 320 Diver Contacts

– 1211 False Alarms

TPR = 0.90, FPR = 0.03
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Classification Results

◼ Test Dataset DTestE1

– Contacts after Classification

– 320 Diver Contacts

– 1211 False Alarms

TPR = 0.90, FPR = 0.03
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SUMMARY AND FUTURE WORK
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◼ Active signal processing is extended by feature extraction and classification.

◼ Two different machine learning techniques are considered.

◼ With both methods the number of false alarms can significantly be reduced.

◼ Deep CNNs perform better than considered Shallow CNN.

◼ Performance achieved with FNN is similar to that achieved with CNNs.

◼ Use hand-crafted features in combination with features of CNNs.

◼ Combine different classification algorithms.

◼ Additional use of kinematic features estimated in tracking. 

◼ Apply method to other active sonar applications (e.g. ASW).

Summary

Future Work
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