

Image-based change detection to reduce false alarms in the Vision1200 synthetic aperture sonar Dr. C. Erdmann and Dr. J. Groen

... a sound decision

Image-based Change Detection

Content

- Introduction
- Data
- Data preprocessing
 - SAS processing
 - Normalization and filtering
- Registration
 - Coarse registration
 - Fine registration (coherent, incoherent)
 - Performance analysis
- Detectors
- Results
 - Receiver operating characteristics (ROC)
 - Robustness analysis
 - Summary

Image-based Change Detection

Basic processing chain

Image-based Change Detection Survey

- **ITMINEX NATO Trial 2014**
 - Study commissioned by WTD 71 •
 - Provision of RV "Alliance" and • trial organization by CMRE
- 3 identical missions
- 2 different sets of 7 objects
- 34 usable legs with total of 116 MLO images ۲
- Sea Otter AUV ٠
- ATLAS ELEKTRONIK UK "Vision MK1 1200" SAS System

Research &

Experimentation

Image-based Change Detection Data: typical example

Data processing SAS processing

- ATLAS ELEKTRONIK SAS processing chain
- Artificial defocusing by sway data distortion •

Original

35

crossrange (m)

50

The ATLAS ELEKTRONIK Group/ 6

Data Processing

Normalization and Filtering

- Normalization
 - Based on along-track mean
 - Based on roll data (eliminate roll effect)
 - Based on combined along-track and range median

- Filtering
 - No filtering
 - Lee-filter: speckle-reducing
 - Anisotropic diffusion filter: edge-preserving

Image Registration Coarse registration

- Rigid registration
- Maximize correlation coefficient of whole image

- Rotation correction
- Δx, Δy: 2cm, Δφ: 0.1°

Image Registration Fine Registration

Image Registration

Coherent Fine Registration

Image Registration

Coherent Fine Registration

Image Registration

Coherent vs. Incoherent Fine Registration

The ATLAS ELEKTRONIK Group/ 12

Image Preparation Subtraction

Image Preparation Subtraction

Example 2

Example 2

Performance Analysis

Performance Analysis: Overall Image Contrast

Coherent, 32x32 px

Performance Analysis

Performance Analysis: Overall Image Contrast

Incoherent, 64x64 px

Performance Analysis

Performance Analysis: Overall Image Contrast

Incoherent, 512x512 px

Detectors

ROC curves

Two simple detectors (single score for comparability)

- 1. Variance detector
 - Threshold in difference image variance

- 2. Template matching detector
 - Template: mean of all MLO signatures

Results Tested Combinations

Normalization		Filter		Detector		
RRn	Range-Roll-normalization	ADf	Anisotropic Diffusion Filter	VARd	Variance detector	
SASn	Median-based normalization	LEEf	Lee-Filter	TMd	Template matching detector	
Rn	Range normalization	NOf	No Filter	-	-	

No Change Detection

Incoherent Change Detection

Coherent Change Detection

Robustness: Best Change Detection (Incoherent)

Robustness: 0.5λ

Robustness: 0.75λ

Robustness: 1.5λ

	No CD	CCD	ICD	ICD-DPCA ½λ	ICD-DPCA ¾λ	ICD-DPCA 1½λ
TM 90%	6200	720	650	1100	1800	8700
TM 95%	14000	1100	780	1300	2400	12000
Var 90%	47000	5800	1600	2700	4200	11000
Var 95%	76000	10000	2000	3500	5600	18000

	No CD	CCD	ICD	ICD-DPCA ½λ	ICD-DPCA ¾λ	ICD-DPCA 1½λ
TM 90%	6200	720	650	1100	1800	8700
TM 95%	14000	1100	780	1300	2400	12000
Var 90%	47000	5800	1600	2700	4200	11000
Var 95%	76000	10000	2000	3500	5600	18000

• Change detection enhances detection performance by factor 10 to 40 as compared to "No CD".

	No CD	CCD	ICD	ICD-DPCA ½λ	ICD-DPCA ¾λ	ICD-DPCA 1½λ
TM 90%	6200	720	650	1100	1800	8700
TM 95%	14000	1100	780	1300	2400	12000
Var 90%	47000	5800	1600	2700	4200	11000
Var 95%	76000	10000	2000	3500	5600	18000

- Change detection enhances detection performance by factor 10 to 40 as compared to "No CD".
- Incoherent change detection slightly outperforms coherent change detection.

	No CD	CCD	ICD	ICD-DPCA ½λ	ICD-DPCA ¾λ	ICD-DPCA 1½λ
TM 90%	6200	720	650	1100	1800	8700
TM 95%	14000	1100	780	1300	2400	12000
Var 90%	47000	5800	1600	2700	4200	11000
Var 95%	76000	10000	2000	3500	5600	18000

- Change detection enhances detection performance by factor 10 to 40 as compared to "No CD".
- Incoherent change detection slightly outperforms coherent change detection.
- The different normalization schemes and filters have a noticeable impact on performance. The median-based
 normalization method without filtering performs best on well focused imagery. Lee-filtering becomes beneficial when
 dealing with defocused SAS imagery.

	No CD	CCD	ICD	ICD-DPCA ½λ	ICD-DPCA ¾λ	ICD-DPCA 1½λ
TM 90%	6200	720	650	1100	1800	8700
TM 95%	14000	1100	780	1300	2400	12000
Var 90%	47000	5800	1600	2700	4200	11000
Var 95%	76000	10000	2000	3500	5600	18000

- Change detection enhances detection performance by factor 10 to 40 as compared to "No CD".
- Incoherent change detection slightly outperforms coherent change detection.
- The different normalization schemes and filters have a noticeable impact on performance. The median-based
 normalization method without filtering performs best on well focused imagery. Lee-filtering becomes beneficial when
 dealing with defocused SAS imagery.
- Future work aims at connecting change detection to the automatic target recognition (ATR) for which the target shadow needs be treated such that its information is preserved.

Contact

ATLAS ELEKTRONIK GmbH

Sebaldsbruecker Heerstrasse 235 28309 Bremen | Germany Phone: +49 421 457-02 Telefax: +49 421 457-3699

www.atlas-elektronik.com

... a sound decision

