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Enhancing Sonar resolution through smart signal processing 

Abstract — Results from Compressive Sensing processing on measurement data from the fresh water lake Vättern 

(Sweden) are shown. A brief introduction to the methods used are given in terms of modelling, sparsity and 

optimization. Two different use cases are shown: Resolution improvement in one ping measurements, and an alternative 

way to image Synthetic Aperture Sonar data incoherently. 

1 Introduction 

Synthetic Aperture Sonar systems (SAS) can be 

considered a mature field of application in underwater 

sonar techniques. Data from a number of subsequent pings 

are combined through signal processing, resulting in 

increased along-track resolution in SAS-imaging. In 

practice, the imaging is often performed using the back-

projection algorithm. The back projection algorithm is a 

fast and robust method to solve the inverse problem which 

gives reliable results. The drawback with back-projection 

is that it suffers from resolution and ambiguity limitations 

related to the frequency bandwidth, aperture size and 

sampling step sizes. 

Methods that can extract more information from the 

available data have been developed in Compressive 

Sensing (CS). These methods are based on minimizing the 

𝑙1-norm of the solution and require that the solution of the 

inverse problem, in this case the SAS-image, is relatively 

sparse. 

The abstract is organized in the following way: Chapter 2 

is a brief introduction to CS and the model used in this 

work. In chapter 3, two examples showing the utilization 

of this framework is shown – demonstrating possibilities 

of these techniques for sonar data. 

2 Compressive sensing 

Non-stringently expressed, the Nyquist-Shannon sampling 

theorem states that the sampling rate of a time-continuous 

signal has to be twice its highest frequency in order to 

ensure reconstruction. Therefore, it comes as a surprise 

that, under certain assumptions, it is possible to reconstruct 

signals when the number of available measurements is 

smaller than expected based on the Nyquist-Shannon 

theorem. The underlying assumptions for this is based on 

that the signal is sparse in a domain, in this case the SAS-

image.  

A signal is called sparse if most of its components are zero. 

Another perspective on this is that many signals are 

compressible, i.e. they can be well approximated by sparse 

signals. This explains why the family of different 

compression techniques (such as JPEG, MPEG, or MP3) 

works so well.  

The rise of interest in leveraging CS for signal processing 

applications has several reasons: a combination of 

development of theory, faster available algorithms, and 

faster computers. The field was pioneered by Candés et al 

in a publication 2004[1]. One early publication reporting 

an application in magnetic resonance imaging can be 

found in [2].  

2.1 The inverse problem 
CS can be applied to several sonar frameworks. In this 

work, a transmitter sends out a properly designed acoustic 

signal, the sonar pulse, which is scattered from objects, for 

example on the sea floor. An array of receivers then 

measures the acoustic signal resulting from the scattered 

waves. This can be modelled as an inverse problem: 

     𝐴𝑥 = 𝑦,         (1) 
Where the forward operator 𝐴 ∈ ℂ𝑚𝑥𝑁 , image 𝑥 ∈ ℂ𝑁, and 

measured Sonar signal 𝑦 ∈ ℂ𝑚. 𝑁 and 𝑚 are the 

dimensions of the operators. Normally, this problem is 

underdetermined (m<<N).  

2.1.1 𝑙1-norm 

The problem to find the sparsest solution is formulated to 

optimize based on the 𝑙0 norm. This is, in general, however 

an NP-hard problem, therefore the optimization problem is 

relaxed to 𝑙1-norm: 

   min‖𝑥‖1 𝑠𝑢𝑏𝑗.  𝑡𝑜 ‖𝐴𝑥 − 𝑦‖2 ≤ 𝜎       (2) 
Where the indices 1 and 2 denote the 𝑙1 and 𝑙2-norms, 

respectively, and 𝜎 is an estimate of the noise. 

  
Fig. 1, Enhanced resolution from one ping data. Left image 

showing delay-and-sum on raw measurement data, right the 

enhanced image based on CS-results. 
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In this work, the quadratic constrained 𝑙1-minimization 

problem has been used, in the SPGL1 implementation (see 

Error! Reference source not found. for more 

information). For more information regarding this 

relaxation step, see ref [1]. 

2.2 Propagators and model 

The model is based on isotropic and frequency 

independent point scatterers.  

The back-propagator is the classical delay-and-sum (see 

for example reference [4]) and the forward propagator is 

based on the complex wave equation (see for example 

reference [5]). 

3 Examples  

The measurements are collected using the experimental 

platform Sapphires in the freshwater Lake Vättern. 

Sapphires has a side-looking sonar array giving a SAS 

resolution of <4x4 cm, using conventional back-

projection. Results using the method described above are 

presented, both from one ping data and from a combination 

of several pings. All measurements are covering the same 

object, a rope loop, to simplify comparisons. The images 

show ‖𝑥‖2
1/3

, to decrease the dynamics in the results. 

3.1. High resolution from one ping measurements  

Enabling a higher resolution from one ping measurements 

than given by the beam pattern for a linear array of a 

certain length is (still) a highly interesting field. The 

resolution is significantly enhanced by using the model 

described above together with the 𝑙1-minimization. This is 

visualized in Fig. 1, where the image to the left shows the 

image using the delay-and-sum formulation on the 

measurement data. The image to the right shows the CS 

result. The CS results have been achieved using the results 

from the minimization together with the forward- and 

backwards-propagator for a synthetically extended array 

(but keeping the inter-distance between the receivers). 

Worth mentioning is that the sparsity in this case is around 

10%. 

3.2 Multiple pings 

This example is based on data from three different pings, 

with no overlapping elements, to demonstrate the 

possibilities of constructing SAS-images. No autofocus 

techniques were used in this example, i.e. no correcting 

phase factor for incorrect sound velocity or other sources 

of errors.  Therefore, the images from the different pings 

are incoherently added. It is clearly seen, see Fig. 2 (left 

without CS, right with CS), that the resolution is enhanced. 
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Fig. 2, Comparison between incoherently added data.from 

three non-overlapping pings without (left) and with 

CS(right) 


