This document and the information contained herein is the property of Saab AB and must not be used, disclosed or altered without Saab AB prior written consent.

Enhancing Sonar resolution through smart signal processing

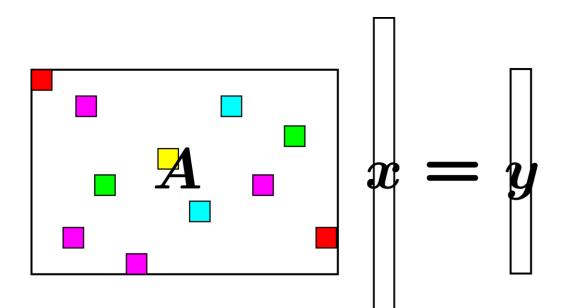
UDT 2019 Sthlm

A. Gällström. L. Fuchs, C. Larsson

COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Andreas Gällström | Document Identification | Issue 1

Outline

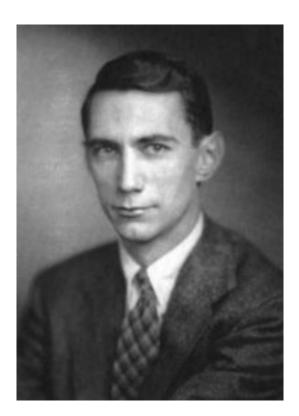
- Compressive Sensing
 - The Inverse Problem
 - l_1 -norm
 - Propagators
 - Model
- Examples
 - High Resolution from 1 ping measurement
 - Scatterer point representation
 - Multiple pings
- Summary



H. Nyquist (1889-1976) and C. Shannon(1916-2001)

Nyquist-Shannon Sampling Theorem

"If a function contains no frequencies higher than B Hertz, it is completely determined by giving its ordinates to a series of points spaced 1/(2B) seconds apart." (Wikipedia)

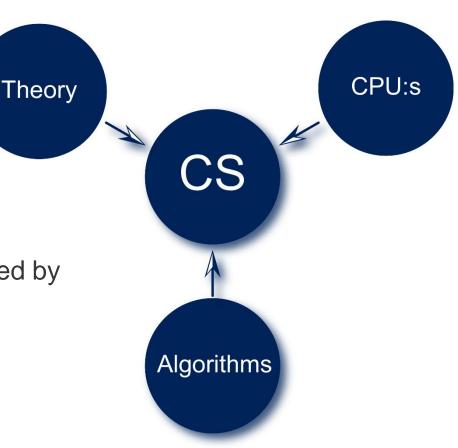


Data compression

- Example: JPEG compression from 487 to 71 kB (16%)
- Typical compression rate with a factor of 10
- To much data is collected
- Idea: Reduce data collection and compensate with signal processing

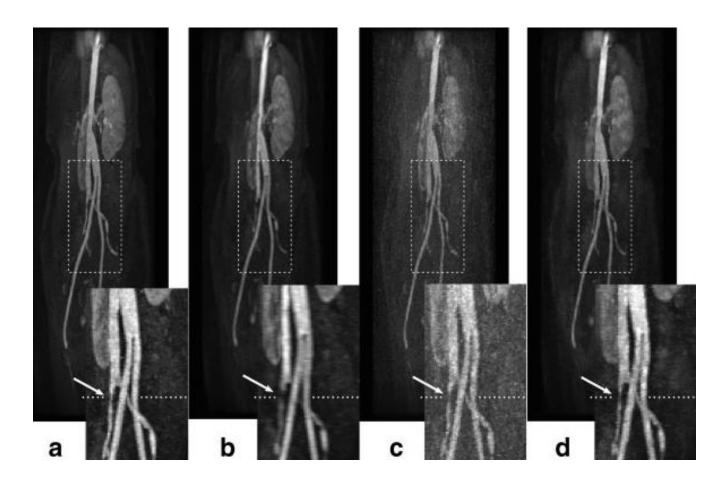
Compressive Sensing

- Developments of theory for Compressive Sensing (CS)
- Faster algorithms
- Faster computers (flops/cpu)
- Enabling practical use of Compressive Sensing (CS)
- Pioneered by: Emmanuel Candés, David Donoho, Justin Romberg and Terence Tao (2004)
- CS means that less data is collected which is compensated by using postprocessing



Compressive sensing – early application MRI

- Magnetic resonance imaging (MRI)
- Picture a shows an MRIimage using complete data set and conventional data processing
- Picture d shows an image using 20% of data set (from a) and CS



M. Lustig, D. Donoho, and J. M. Pauly. "Sparse MRI: The application of compressed sensing for rapid MR imaging." Magnetic resonance in medicine 58, no. 6 (2007): 1182-1195.

6 COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Andreas Gällström | Document Identification | Issue 1

Inverse problems

• Linear set of equations:

$$Ax = y \begin{cases} x \in \mathbb{C}^N \\ A \in \mathbb{C}^{m \times N} \\ y \in \mathbb{C}^m \end{cases}$$

- y is an observation/measurement, and we are trying to find x (parameter)
- Normally this set of equations are undetermined (m<<N) =>infinitely many solutions (provided that there exists at least one)
- Sonar: The reflected signal is used to determine position, speed, target class..., i.e. parameters.

Inverse problems

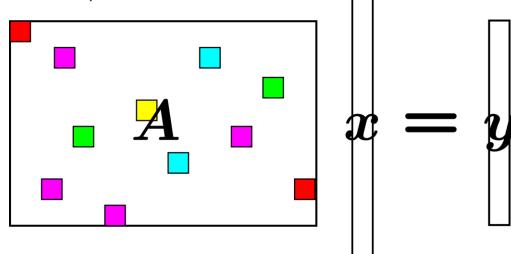
• Underdetermined linear set of equations:

Ax = y

- Possible to reconstruct signals under assumption of sparsity! (A vector/matrix is sparse if most of its components are zero)
- Efficient algorithms exists, in this work: Quadratically constrained I1-minimization problem:

 $\min \|x\|_1 \ subj. \ to \ \|Ax - y\|_2 \le \sigma$ $\sigma \ related \ to \ SNR$

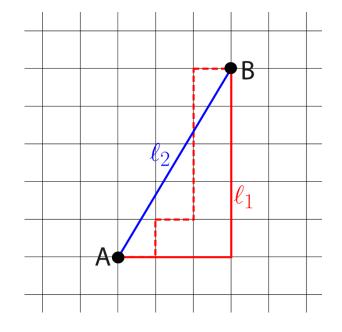
(other variants exist: LASSO, Dantzig selector, ...)



$$l_0$$
-, l_1 - and l_2 -norms

- Norm: total size or length
- l_2 : "straight-line" Euclidian distance $||x||_2 = \sqrt{\sum_i x_i^2}$
- *l*₀: Sparsity ||*x*|||₁ = #(*i*|*x_i* ≠ 0) (total number of non-zero elements in a vector. Useful for finding the sparsest solution. However: minimization is regarded as NP-hard.
- $l_1: ||x||_1 = \sum_i |x_i|$
- l_1 relaxed l_0 :used in Compressive sensing. Not as smooth as l_2 , but this problem is better and more unique than the l_2 -optimization.

The optimization road is convex optimization.

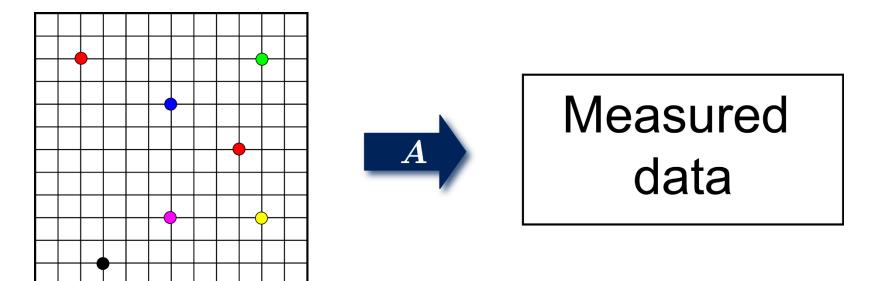


Compressive sensing

- Sonar
 - Point scatter model
 - Back-propagator
 - Forward-propagator

Model (Point scatterer)

- Isotropic, frequency independent point scatterer as model.
- Ax = y
- A: signal generator (from point scatterer to element signals)

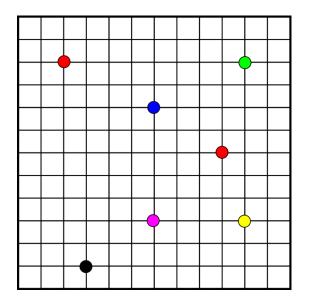


Back-propagator

• Classical Delay-And-Sum:

$$\hat{\gamma}(r) = \frac{1}{N} \sum_{n=1}^{N} A_n s_n(t_n(r))$$

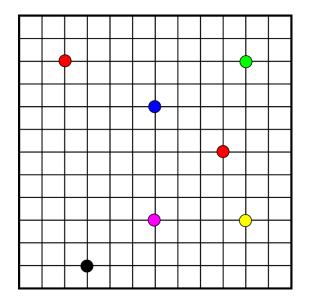
A



Forward-propagator

Signal observed at time t and position r emitted from a point scatterer at r':

$$s(t,r) = \frac{A\left(t - \frac{|r - r'|}{c}\right)}{|r - r'|^2} e^{i\omega t \left(t - \frac{|r - r'|}{c}\right)}$$

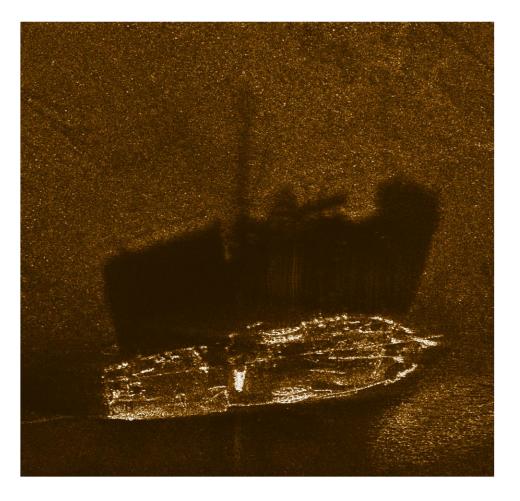


Outline

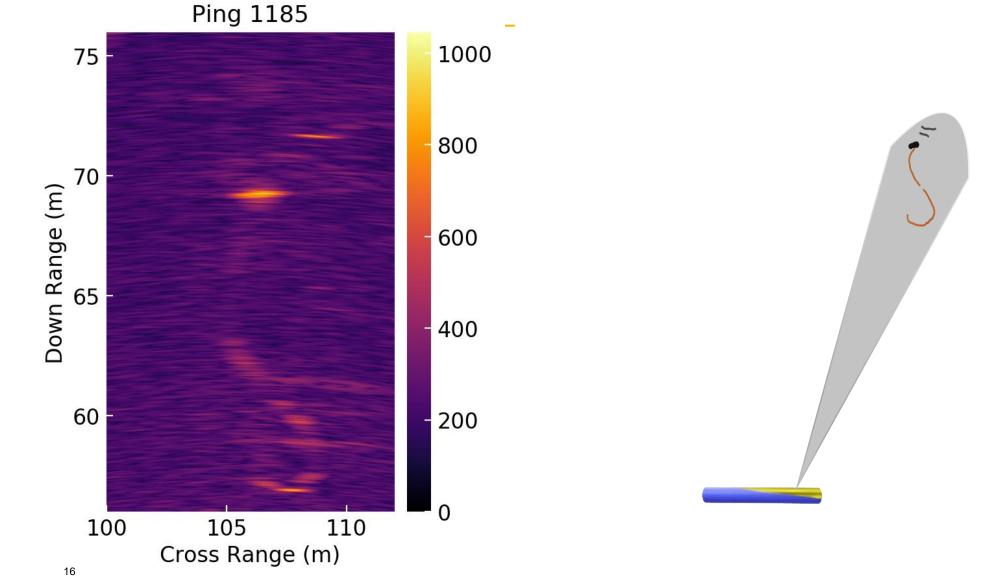
- Synthetic Aperture Sonar
- Compressive Sensing
- Examples
 - High Resolution from 1 ping measurments
 - Robustness
 - Modell from different pings
 - Autofocus position based
 - Autofocus phase based
- Summary

Measurement setup

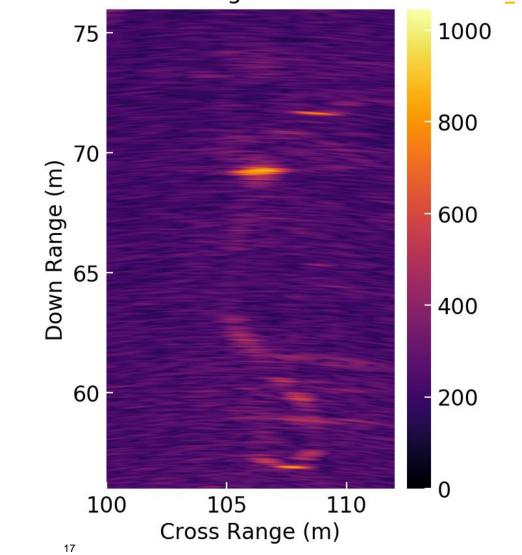
- Sapphires
- SAS resolution <4x4 cm
- Fresh water lake: Vättern



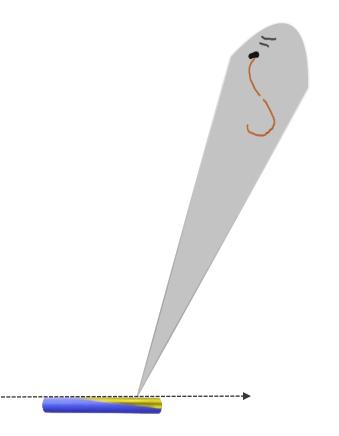
Normal resolution from 1 ping measurement



Normal Resolution from 1 ping measurment

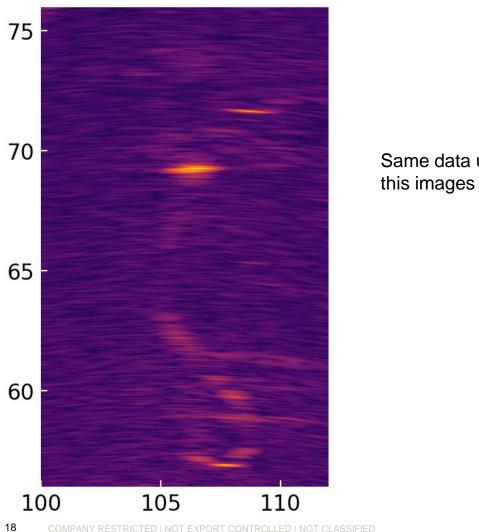


 $\min \|x\|_1 \ subj. \ to \ \|Ax - y\|_2 \le \sigma$ Visualize with longer array

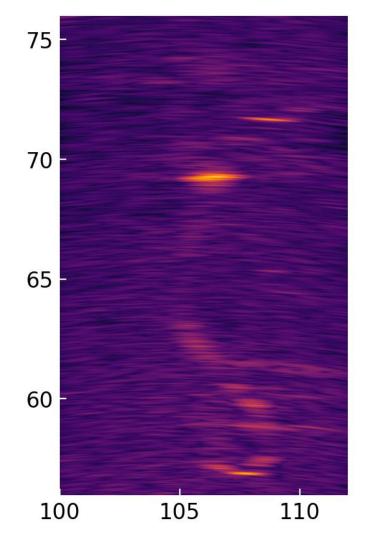


Andreas Gällström | Document Identification | Issue

Same data used for both

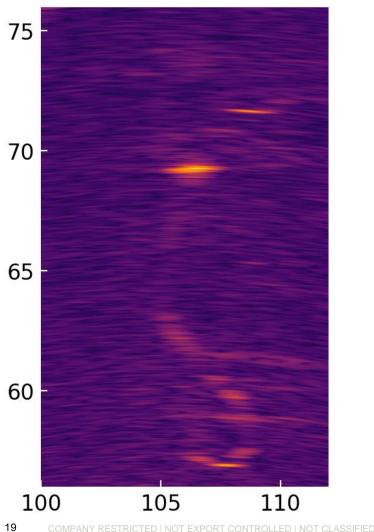


18 COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Andreas Gällström | Document Identification | Issue 1 $\min \|x\|_1 \operatorname{subj.to} \|Ax - y\|_2 \le \sigma \text{ same resolution}$

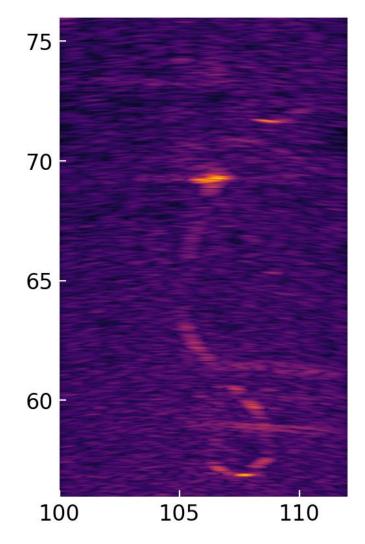


Same data used for both

this images

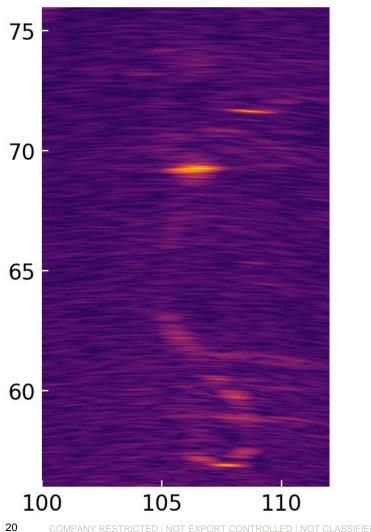


COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Andreas Gällström | Document Identification | Issue 1 $\min \|x\|_1 \operatorname{subj.to} \|Ax - y\|_2 \le \sigma \operatorname{res:} x2$

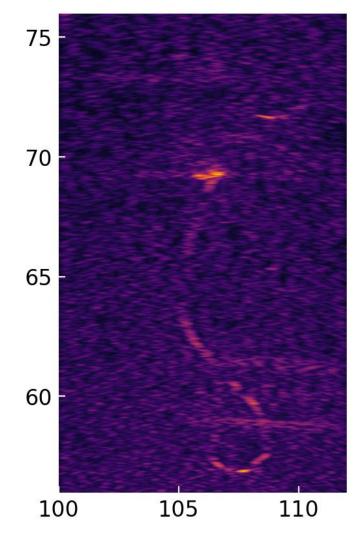


Same data used for both

this images



COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Andreas Gällström | Document Identification | Issue 1 $\min \|x\|_1 \ subj. \ to \ \|Ax - y\|_2 \le \sigma \ res: \ x4$

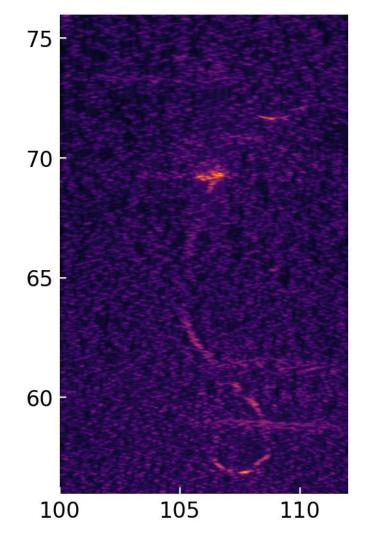


Same data used for both

this images

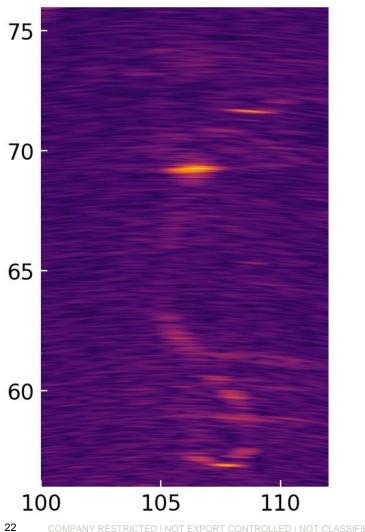


21 COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Andreas Gällström | Document Identification | Issue 1 $\min \|x\|_1 \operatorname{subj.to} \|Ax - y\|_2 \le \sigma \operatorname{res:} x8$

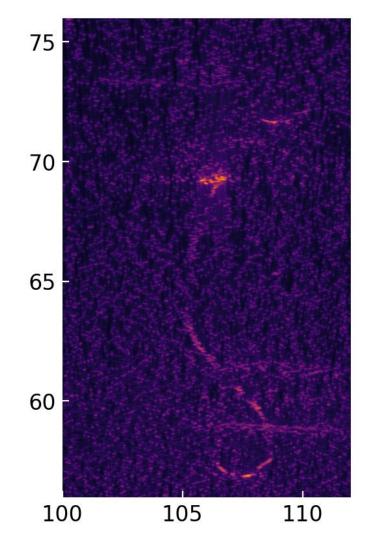


Same data used for both

this images

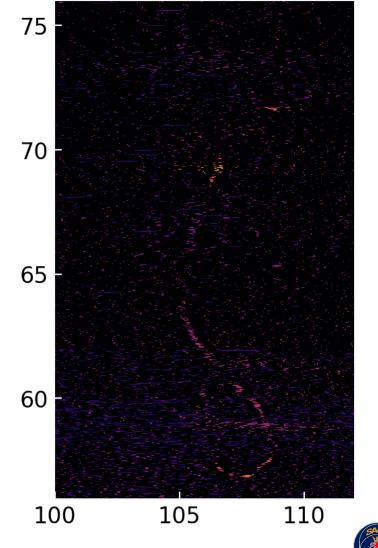


2 COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Andreas Gällström | Document Identification | Issue 1 $\min \|x\|_1 \operatorname{subj.to} \|Ax - y\|_2 \le \sigma \operatorname{res:} x16$

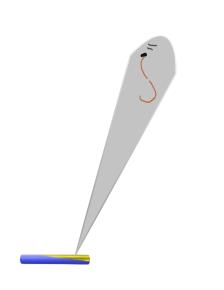


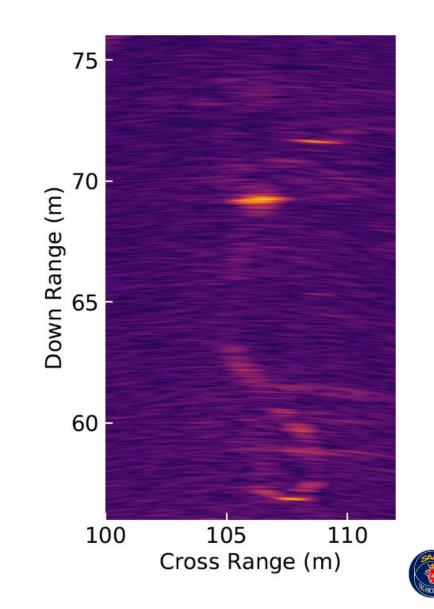
Modell

- Visualization of point scatterers based on one ping
- Sparsivity: ~10%



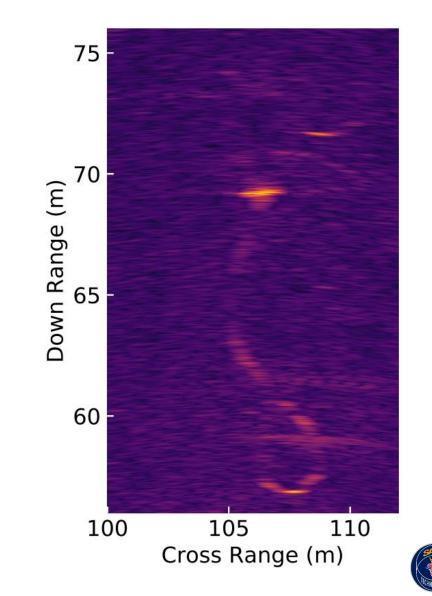
1 ping



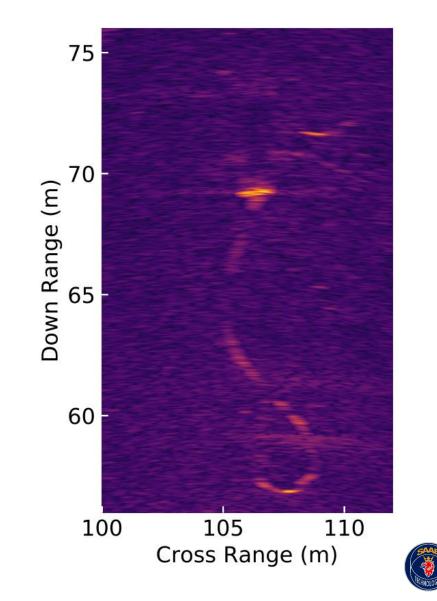


2 pings

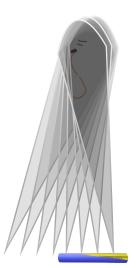


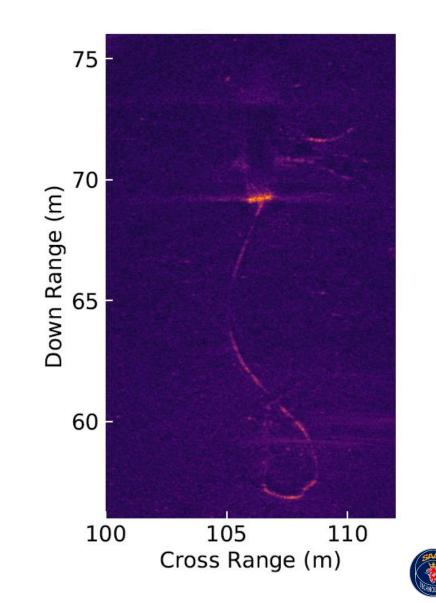


3 pings



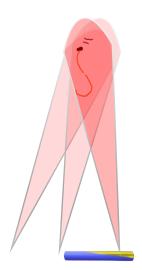
~30 pings

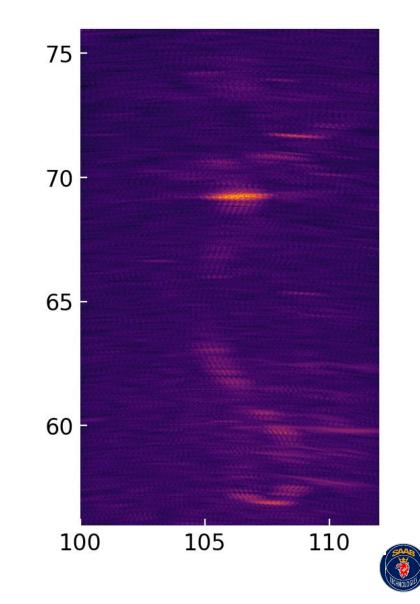




Several pings

Three pings used, with no overlap (and no autofocus), *coherently* added

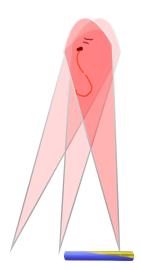


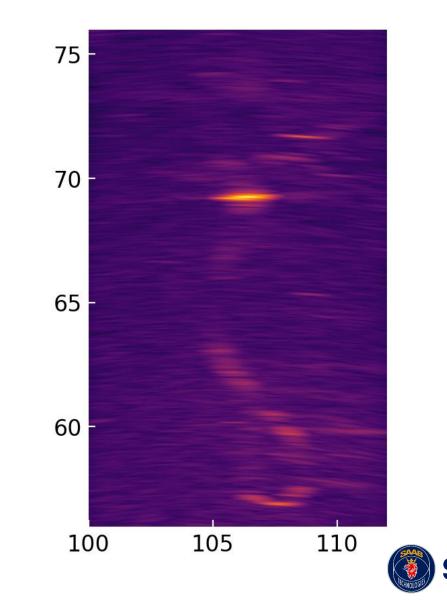


B

Several pings

Three pings used, with no overlap (and no autofocus), *incoherently* added

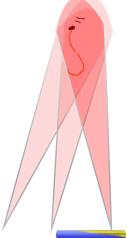


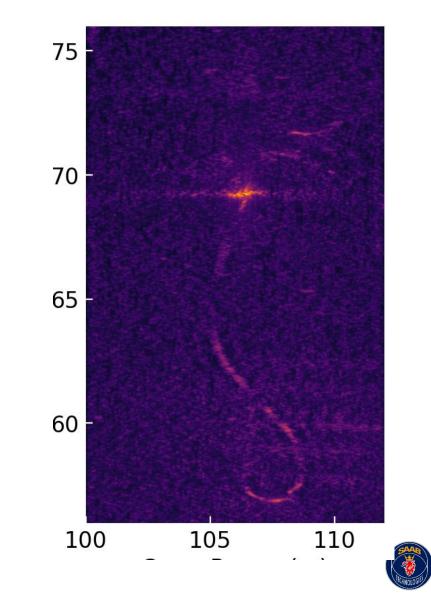


B

Several pings

Three pings used, with no overlap (and no autofocus), *processed* using CS and incoherently added





Same data from 3 non-overlapping pings without autofocus

75

70

65

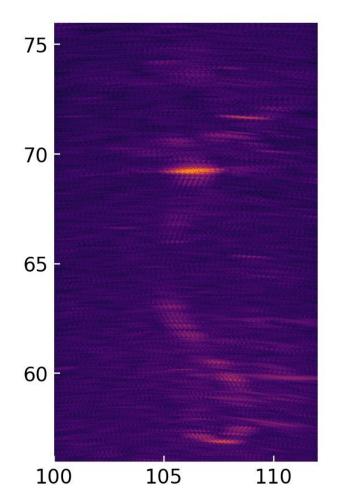
60

100

105

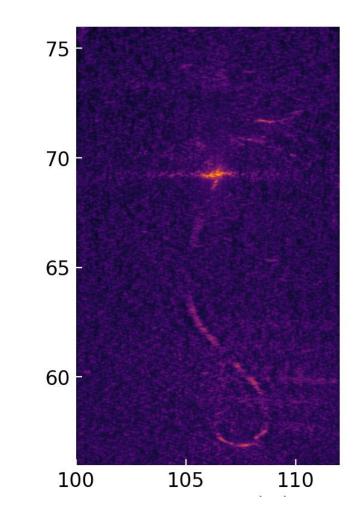
110

Coherently added



Incoherently added

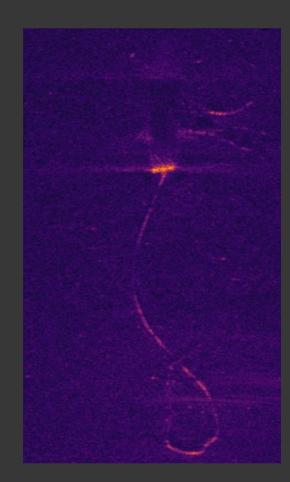
CS and *incoherently* added



31 COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Andreas Gällström | Document Identification | Issue 1

- Compressive sensing utilizing the sparsity in sonar data is an interesting and promising tool
- Examples:
 - Enhancing resolution in one-ping images
 - Combining multiple pings

Thank you



COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Andreas Gällström | Document Identification | Issue 1