

FULLY ELECTRIC (BATTERY/FUEL CELL) **POWERED SUBMARINE** and its performance compared to other submarine designs

Nevesbu

Naval Architects & Marine Engineers

Sven Los

CONTENT

- ➤ Introduction
- \blacktriangleright Power plant design and Hydrogen storage
- > The H_2 MORAY concept
- > Power plant performance comparison
- > Future outlook & discussion
- Conclusion

INTRODUCTION UDT 2018: The E-MORAY

- ➤ Totally battery powered concept: The E-MORAY
 - Range of 2000 nm
 - > Endurance of 24 days
 - > Potential expected to increase

- Potential benefits
 - > Air-independent power plant
 - Reduction in signatures
 - > Decrease in design complexity

INTRODUCTION Research objective

- > Fully Electric (battery/Fuel cell) powered submarine concept
- > Impact on submarine design and operational capabilities currently unknown
 - Creation of a concept design; The H₂MORAY
 - > Performing an operational capability study
- Power plant comparison between E-MORAY, H2MORAY and conventional Diesel-electric MORAY1800

Power plant layout H₂MORAY

- > Proton Exchange Membrane Fuel Cell
 - Proven technology
 - > Designed for transit speed
- Lithium-ion as main batteriesDesigned for high speed sprints
- Oxygen storage; LOX tanks
 Proven technology

Hydrogen storage selection

- Hydrogen storage selected over hydrogen reforming
 - Design complexity
 - > No impact on signatures
 - Outside pressure hull solutions possible
- High pressure hydrogen storage
 - > 700 bar storage
 - > Proven technology in car industry

High pressure hydrogen storage outside the pressure hull

High pressure hydrogen storage outside the pressure hull

THE H₂MORAY Submarine main concept

Dimensions	Length	64.4 m
	Hull diameter	6.4 M
Displacement	Surfaced	1700 ton
	Submerged	1900 ton
Diving depth	Max. operational	300 m
Combat	Launching tubes	6
	weapons	20
Speed	Max for one hour	20 kn
	Burst	21.5 kn
Fuel cells	Installed power	800 kW
Hydrogen	Number of bottles	382
	Storage capacity	7.7 ton
Oxygen	Storage capacity	68 ton
Batteries	Installed capacity	7.4 MWh
Accommodation	Crew & trainees	34+4

UDT Stockholm 2019 COMMERCIAL IN CONFIDENCE

MISSION CAPABILITIES

Indication of a four week round trip of 2500 nm

- Operational advantages
 - > Air-independent power plant
 - Low signatures
- Mission capabilities
 - Local to medium range mission
 - Sea control/denial
 - Intelligence gathering
 - Special forces/equipment deployment
 - Coastal defense

CONCLUSION H₂MORAY CONCEPT

- Battery/Fuel cell powered submarine is a feasible concept
- Local to medium range missions feasible with a high level of covertness
- > High operational flexibility due to self charging capacity fuel cells
- LOX tanks limiting design factor

COMPARISON WITH DIESEL-ELECTRIC AND TOTALLY BATTERY POWERED SUBMARINE

Overview of designs

		MORAY 1800	E-MORAY	H ₂ MORAY
Submerged displacement	[ton]	1900	1900	1900
Accommodation	[-]	38	38	38
Combat (tubes & weapons)	[-]	6 & 20	6 & 20	6 & 20
Maximum speed	[kn]	20	20	20
Power plant	[-]	DG-set & lead-acid batteries	Li-ion batteries	Full cells & Li-ion batteries

COMPARISON WITH DIESEL-ELECTRIC AND TOTALLY BATTERY POWERED SUBMARINE

Submerged range and submerged endurance

COMPARISON WITH DIESEL-ELECTRIC AND TOTALLY BATTERY POWERED SUBMARINE

Total range and endurance

FUTURE OUTLOOK Impact of expected technical developments

NT

Potential of E-MORAY

Potential of H₂MORAY

18

DISCUSSION

- Development speed & applicability of new technology difficult to estimate
- ➤ Increase of design space
- ➤ Importance of power plant selection based on Navies CONOPS
- Important to analysis new commercially developed technologies and the knock-on effects of their (large scale) application in submarine designs
 - ➤ Safety
 - Design complexity
 - Crew size

CONCLUSION

- Potential of alternative power plant solutions for submarines will increase in the nearby future
- Totally battery powered submarines and battery/fuel cell power submarines will become realistic design options
- > Design space exploration in early design phases will become of greater importance
- Commercially driven developments will impact submarine design considerations

CONTACT

Nevesbu b.v.

Kelvinring 48 2952 BG Alblasserdam The Netherlands +31 88 943 3400 sales@nevesbu.com www.nevesbu.com

M

VICE E E E E VI