IMPROVING ACOUSTIC STEALTH Analysis of the vibro-acoustic behavior of a submarine hull on a wide frequency range using experimental and numerical approaches

Valentin Meyer¹, Laurent Maxit²

¹ Naval Group Research, Ollioules, France
² Laboratoire Vibrations Acoustique, INSA Lyon, France

RESEARCH

POWER AT SEA

Hull acoustic performances	Operational capability
Far-field radiated noise	Acoustic stealth
Reflection/scattering	Target strength
Self radiated noise	Sonar performances

RESEARCH

NON SENSIBLE

CURRENT CHALLENGES IN NUMERICAL MODELING

- SONAR is able to detect a noise source from a few Hz to dozens of kHz
 - > Techniques to predict the vibro-acoustic response for a wide frequency range
 - > Simplified model of a cylindrical shell submerged in an infinite fluid medium

- Structural complexity
- Calculation cost depends on mesh size

High frequency range: SEA

RESEARC

- Energy balance between subsystems
- Strong assumptions
- Only global results

How to model on a wide frequency range?

CHALLENGES IN MEASUREMENTS

Sketch of the MARS500© hydrophone array

Experiments at sea are:

- costly and time-consuming
- not ideal to understand the physical phenomena
- only when the submarine is built

How can the vibro-acoustics of a stiffened shell be measured?

- 1. The CTF method
- 2. Experimental work
- 3. Results and Discussion
- 4. Summary

1. The CTF method

A SUB-STRUCTURING APPROACH:

*L. Maxit, J.-M. Ginoux, Prediction of the vibro-acoustic behavior of a submerged shell non periodically stiffened by internal frames, JASA 128(1):137-151, 2010.

**V. Meyer, L. Maxit, J.-L. Guyader, T. Leissing, Prediction of the vibroacoustic behavior of a submerged shell with non-axisymmetric internal substructures by a condensed transfer function method, JSV, 360:260-276, 2016.

PRINCIPLE OF THE CONDENSED TRANSFER FUNCTION METHOD

RESEARCH

• Extension of the admittance method for line coupled systems:

Solving the coupling forces between the subsystems: $[F_c] = \left(\left[Y_{ij}^1 \right] + \left[Y_{ij}^2 \right] + \left[Y_{ij}^3 \right] \right)^{-1} \left[\widetilde{U} \right]$

- Requires only characteristics from the uncoupled subsystems
- The admittances can be calculated by any method

THE CTF METHOD APPLIED TO STIFFENED SUBMERGER CYLINDRICAL SHELLS

Analysis of the VA behavior using experimental and numerical approaches

NON SENSIBLE

THE CTF METHOD AS AN INDUSTRIAL TOOL

ORCAA: tool developed at Naval Group for vibro-acoustics predictions

Acceleration level (dB) - 3000 Hz - Excited frame n°52

RESEARC

Advantages of the hybrid method:

- Low computation costs compared to FEM/BEM
- Possibility to couple subsystems described by different approaches
- No theoretical frequency limit for the CTF method
- High versatility compared to analytical methods: different stiffeners spacing, various internal structures

2. Experimental work

DESCRIPTION OF THE SUBSYSTEMS

Stiffened cylinder in steel

- Length: 1,5 m
- Radius: 100 mm
- Thickness: 1,5 mm
- Two end caps
- 3 different stiffeners spacing divided in 5 sections

EXPERIMENTAL SETUP

RESEARCH

1

- In air
- Semi-anechoic room

August

RESEARCH

DEFINITION OF THE SCANNING GRID

- The maximum distance between two consecutive measurement to capture the physics is 15 mm
- It results in 101 points lengthwise
- Measurement every 9° on half the cylindrical shell (assumption of symmetrical system)
- Microphone array to measure the pressure around the cylindrical shell

3. Results and discussion

RESEARCH

MAPS OF RADIAL VELOCITIES

NON SENSIBLE

THE STATIONARY PHASE THEOREM TO CALCULATE THE RADIATED PRESSURE

RESEARCH

NON SENSIBLE

Power estimated by 3 means :

- full experimental: summation over the microphone array
- hybrid: experimental vibrations + stationnary phase theorem + integral over an enclosing sphere
- full numerical: CTF method + stat. phase th. + integral over an enclosing sphere

NAVAL GROUP

4. Summary

- A numerical method and an experimental procedure have been presented to study the response of a stiffened cylindrical shell
- The vibrations and radiated pressure of a scale model have been measured and calculated and some physical phenomena have been discussed
- Experimental validation of the numerical method

Perspectives:

• Optimization of the submarine and test new designs to improve acoustic stealth of submarines

Thank you for your attention

rvados

los derechos r XXXXX

RESEARCH

POWER AT SEA