SMaRC

SWEDISH MARITIME ROBOTICS CENTRE

SWEDISH MARITIME ROBOTICS CENTRE

Ivan Stenius Centre Director SMaRC stenius@kth.se

What's SMaRC?

- National industrial research center for maritime robotics
- IRC: designated target of financiers to focus on industry needs
- Triple-Helix
- Sweden's currently largest academic initiative for maritime robotics research with a focus on underwater technology
- 2017-2024, budget over 200Msek, 15 research projects with just over 30 people involved (about 20 full-time)

2019-05-17

Who are we?

- KTH Aeronautical & Vehicle Engineering (AVE)
- KTH Robotics Perception & Learning (RPL)
- KTH Applied Electro Chemistry (AE) KTH – Industrial Ecology (IE) University of Gothenburg (GU) Stockholm University (SU) Swedish Defence Research Agency (FOI) Swedish Defence Material Administration (FMV) Saab / Kockums
- Saab Dynamics Marin Mätteknik AB (MMT)

SMaRC - Swedish Maritime Robotics Centre

... and even more 🙂

2019-05-17

SMaRC - Swedish Maritime Robotics Centre

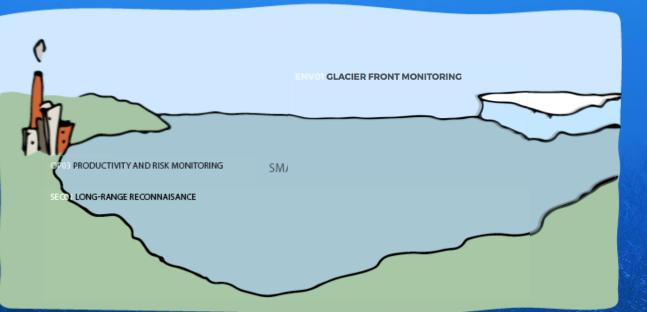
70 % of the world's surface is ocean.

It provides us 50 % of the O₂ and directly feeds over 2 Billion people.

The ocean is the 7th largest economy in the world.

Yet, we have only explored 5 % of it.

"The expert group recommends that the G7 science ministers support the development of a sustained sea and ocean observing system" (G7 expert workshop on future of the oceans and seas, May 2016)


Scenarios

- Impact areas
- Scenarios
- Capabilities

Capabilities Perception

C39 Ability to accurately:

SMaRC

- localise surrounding objects for collision avoidance in murky waters at high speed (10kn).
- localise ice front in relation to vehicle position.

2019-05-17

operate in dynamic oceanic conditions such as: low salinity; low visibility, turbidity; shallow waters; various bottoms: sand, mud, rock, flat, corrugated; presence of ice on the surface; no GPS; depth up to 300m; sea currents up to 3kn

C38

Ability to detect pollutants on molecular level in the water column (Advanced sensor suite to detect pollutants)

C41 Autonomous in real-time accurate

- feature identification (mooring line, base fundament, algae, etc.)
- identify, classify and geo-tag (primarily) mane-made objects and (secondarily) natural objects at high speed (10kn)

C42

Autonomously in real –time identify a deviation from a "normal state": Monitor and detect variations from a "normal-state" in the underwater domain

Capabilities Autonomy

Ability to safely without entanglement precision manoeuvre

C12

Navigate safely in totally unknown and dynamically changing environments without access to surface

C13

Ability to, beyond what already exists today, in real time adapt and replan a mission

C8

Deploy (and preferably retrieve) payloads to well defined positions and in typical ambient conditions from "Mother AUV" (e.g. acoustic nodes for communication and positioning).

C10

Swarm intelligence to Localize the source of pollutants Map the extension of a polluted area Autonomously handle decentralized versus centralized control Create perimeter (of fixed and moving assets) around an object of interest

SMaRC swedish maritime robotics centre

Capabilities Under Water Communication

C23

Ability to perform <u>optimised</u> underwater communication and data transfer with:

- nodes deployed at the seafloor,
- between "Mother-AUV" and micro AUV swarm,
- networks of other moving or not moving nodes/vehicles/submarines/ships,
- control central and sensors.

Capabilities Endurance

C29

Endurance to map and monitor a glacier front (extending 20km) in one sweep as fast as possible (preferably at speeds > 5kn) without re-charging.

C30

Increased range of AUV to > 1000 km or 30 days @ optimal speed and >400km @ 5kn

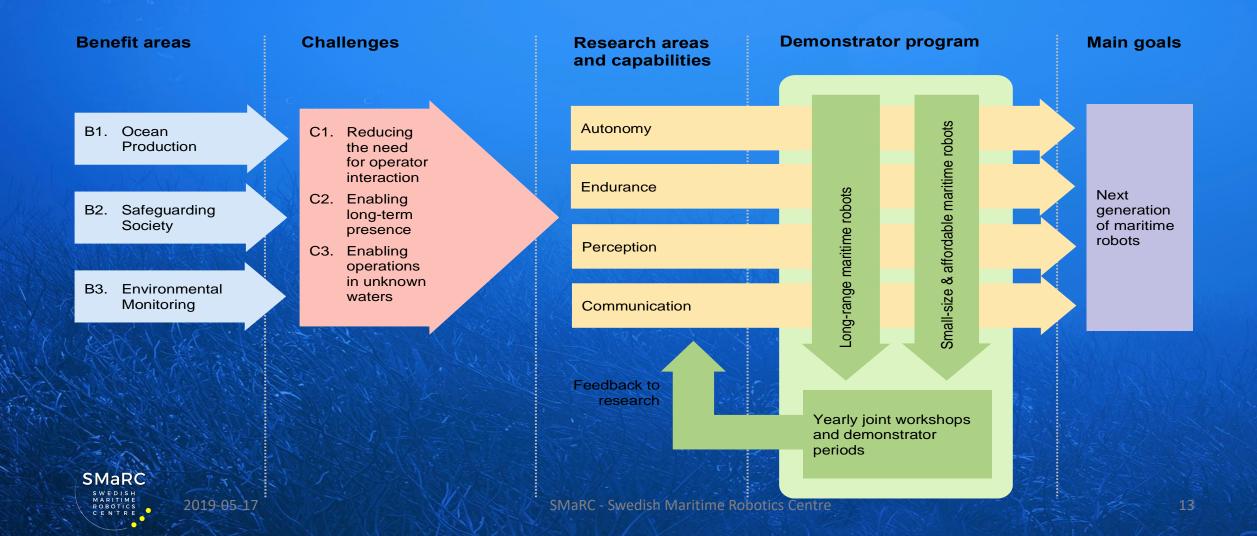
C32

Ability to perform long-term continuous operations in a predefined area (perform multiple missions: dock, transfer data, recharge and repeat mission)

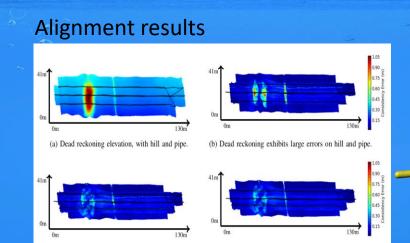
2019-05-17

Scenarios

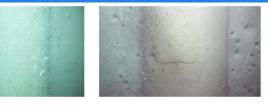
Most capabilitiesson the different scenarios converge into common interests

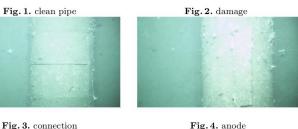

ENVIRONMENTAL SENSING

Research Plan

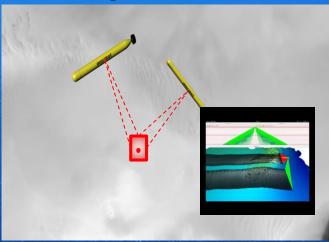

Research Area Perception

Capabilities


- Localize and classify objects and features in dynamic oceanic conditions
- In real-time detect deviation from "normal-state"
- Detect and classify substances on molecular level in the water column


Sub Projects

- SP02 Deep Learning
- SP05 Underwater Navigation
- SP06 Underwater Perception
- SP10 Sniffer sensor


Classification of Sonar Data

Place Recognition

Bathymetric SLAM

Research Area Autonomy

Capabilities

- Real time decisions based on sensor data and operational constraints
- Swarm intelligence to e.g. localize and cage an intruder
- Sub Projects
 - SP7 Robust Mission Planning
 - SP8 Multi-Agent Networks
 - (SP01 Docking & SP04 Hydrobatics)

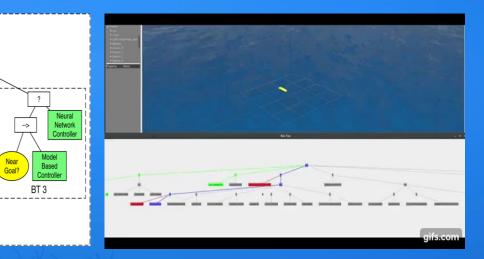
Adding Neural Network Controllers to Behaviour

> Model Based

Execution time Ok?

BT 12

BT 2


BT 123

Trees

Safety Ok?

BT 1

Improving the Modularity of AUV Control Systems using Behavior Trees

Caging: 3D Pursuit-Evasion for AUVs

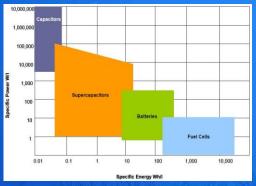
Research Area Endurance

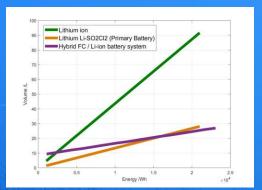
Capabilities

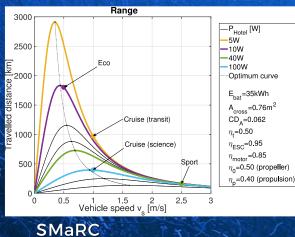
- Long range in remote and unknown areas
- Long time persistence in local known waters
- Sub Projects
 - SP01 Docking

2019-05-17

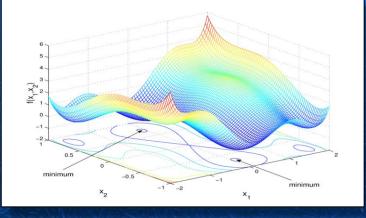
- SP03 Performance Optimization
- SP04 Hydrobatics
- SP09 Air Independent Energy Storage





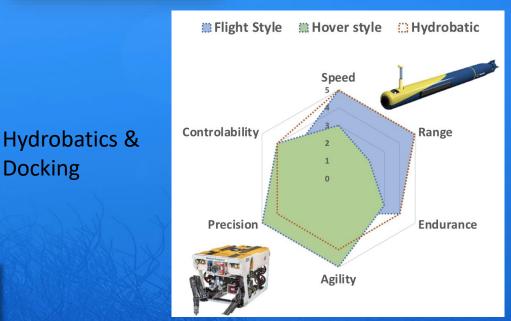

Research Area Endurance

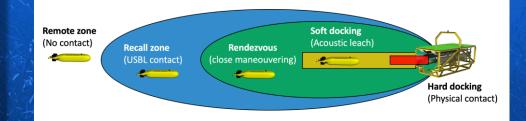
Fuel Cells in AUVs


Multivariable Performance Optimization

2019-05-17

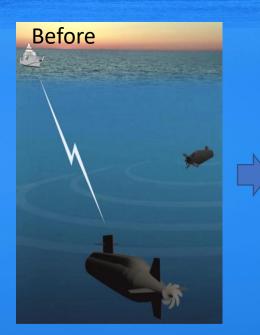
S W E D I S H MARITIME ROBOTICS


CENTRE

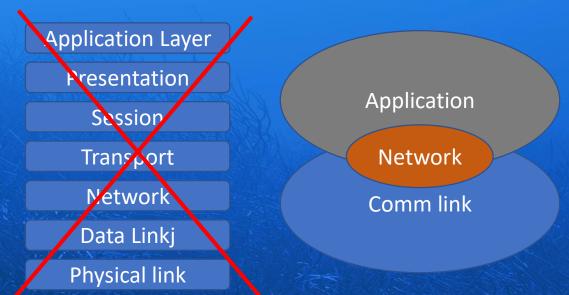


Docking

SMaRC - Swedish Maritime Robotics Centre


Research Area Underwater Communication

Capabilities


 Optimized and robust underwater communication links and networks

Sub Projects

- SP11 Underwater Communication
- SP12 Underwater Networks

Research Area Underwater Communication

Focus right now

SP01 Docking
SP04 Hydrobatics
SP07 Robust Mission
Planning

SP08 Multi-Agent

Networks

AUTONOMY

COMMUNICATION

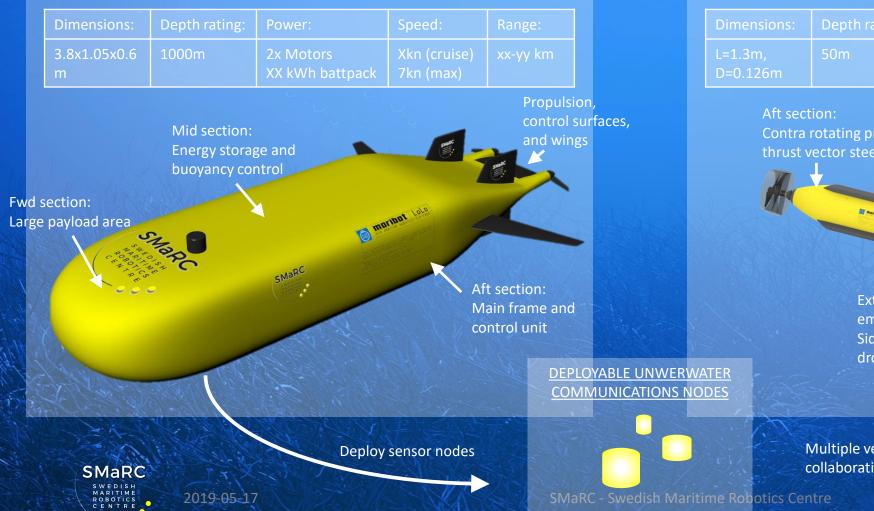
SP11 Underwater Communication SP12 Underwater Networks

ENDURANCE

SP03 System Performance SP09 Energy Storage

Göteborgsforskare p expedition till Antark

NYHET: 2018-12-20



2019-05-17

SMaRC - Swedish Maritime Robotics Cer

SMaRC Demonstrator Platforms

LONG RANGE LARGE AUV (LoLo)

SMALL & AFFORDABLE AUVs (SAM)

Dimensions:		Depth rating:	Power:	Speed:	Range:
L=1.3m, D=0.126m		50m	2x1kW motors 1.4kWh battpack	4kn (cruise) >10kn (max)	50-100 km
Aft section: Contra rotating props, thrust vector steering					
/ATER ODES		External rails: emergency kit, Side-Scan Sonar, and drop weights		Nose section: UW-com, DVL, multi- beam, FLS, and water quality sensors	
		Multiple vehicles collaboration test	the second s		

Technology Demonstrator Ran

Commercial of-the-shelf state of art Maritime Robots

Dimensions:

- Length:
- Diameter:
- Weight:

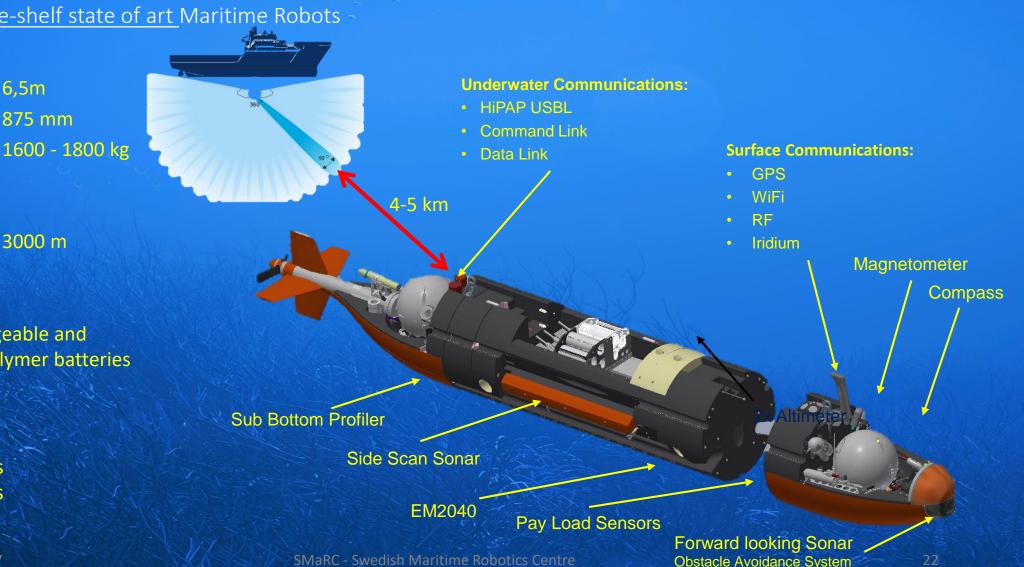
Depth Ratings:

- Max depth:
- 3000 m

6.5m

875 mm

Power Supply:


• 4x (max 6) Rechargeable and swappable Lithium Polymer batteries

Endurance:

 4 Batteries 26 hours at 4 knots 41 hours at 3 knots

SMaRC

Thanks

S W E D I S H M A R I T I M E R O B O T I C S C E N T R E

SMaRC - Swedish Maritime Robotics Centre