

UNMANNED MCM INTEGRATED SYSTEMS

TODAY AND FOR THE FUTURE

UDT CONFERENCE - STOCKHOLM

14/05/2019

UMIS[™] FULLY INTEGRATED COLLABORATIVE SYSTEM

A STAND-OFF SOLUTION FOR MCM MISSIONS

UMISTM - MCM TURNKEY SOLUTIONS

📙 🚍 Awarded by Belgian & Netherlands Navies for NATO MCM missions \! 🕀

ON THE BATTLEFIELD

REDUCING DOWNTIME

1/3 FOCUS ON LATEST INNOVATIONS

USV INSPECTOR 125

A NEW GENERATION OF NAVAL SURFACE DRONE

INSPECTOR 125

- Designed on a sea proven basis V2NG SAR crafts for SNSM
- Operated and deployed from a ship or the shore
- Air-transportable
- High carrying capacity (up to 3 tons of payload)
- Reconfiguration capacity with adapted LARS systems: towed sonar, mid-size AUV, MIDS ROVs
- Launch and recover in rough seas
- Towing capacity for mine-sweeping system
- Fully integrated into UMISTM system

2/3 FOCUS ON LATEST INNOVATIONS

TOWED SONAR T18 BASED ON THE A18-M AUV

COMPACTNESS AND EFFICIENCY

A TOWED SONAR DERIVED FROM THE AUV

- Same launching and recovery system (LARS) for deployment from USV
- Shared logistics & reduced reconfiguration time of the USV
- Self-powered
- Smaller and lighter towing cable for:
 - L Outstanding navigation performance at high sea speeds
 - └ Smaller cable reduces winch on the carrier boat -> the boat's engines -> fits on very compact USV -> no need for a large MCMV

3/3 FOCUS ON LATEST INNOVATIONS

OCTOPODA MCMV RANGE

A NEW GENERATION OF MCMV

UNMANNED MCMV

STAND-OFF MINE WARFARE SOLUTION INTEGRATING NAVAL DRONES

- A complete system integrating several type of drones collaborating within the same mission: detection, identification, neutralisation
- Integrated launch and recovery systems that are effective even in high sea states
- Reduces the crew onboard
- Operators stay outside the mine field

HOW TO MANAGE THE MISSION?

A COMPREHENSIVE SOFTWARE SUITE FOR MISSION OPTIMISATION

UMISOFT™

A COMPREHENSIVE SOFTWARE SUITE

ALL IN ONE: MISSION MANAGEMENT – DRONES CONTROL – DATA MANAGEMENT

UMISOFT™

A COMPLETE SOFTWARE SUITE

MISSION DRIVEN SOLUTION

FROM MISSION MANAGEMENT TO DATA MANAGEMENT

UMISOFT DC

Planning of MCM missions

- Mission management
- Automatic solutions proposition
- Real time adaptation
- Overview and detailed view

Supervision

UMISOFT MM

- Tactical situation
- Real-time tracking
- Evaluation

<u>Evaluation</u>

- Performance / Factors reports based on Estimated and actual indicators computation
- Synthetic maps

Drones preparation & programmation

- Tasks creation and edition
- Setup and programming
- Diagnosis

Execution monitoring

- Real-time feedback
- Manual or automated piloting (depending on drone capabilities)

Multi-sensor data fusion

- Sidescan and bathymetric data import and processing
- Fully configurable georeferenced multilayer display

Automated processing

ΣQ

JMISOFT

- Automatic navigation corrections
- Seabed classification
- Automated Target Detection (ATD)
- Computer Aided Classification
 (CAD)
- Change detection

Objects database

• Objects management and merging by the operator

ATD & UNMANNED SYSTEM

ASSISTED CLASSIFICATION

UMISOFT™

AUTOMATIC TARGET DETECTION

DATA MANAGEMENT TOOL WITH ASSISTED CLASSIFICATION MODULE

- Automatic Target Detection
- Aided Classification Tools for Operators
 - L Automeasure module
 - ∟ Simulating view module

ATD TOOL FOR SURFACE OR EMBEDDED PROCESSING

150 m range - 15 m altitude - SAS

SUSPECTED MAN MADE OBJECTS

AUTOMATIC TARGET DETECTION

CONTACTS ZOOM

ZOOM ON THE SUSPECTED MAN MADE OBJECT

ZOOM ON THE SUSPECTED MAN MADE OBJECT

RED : ECHO

BLUE: SHADOW

BENEFITS

AUTOMATIC DETECTION ALGORITHMS ARE DUPLICATED IN THE SAME WAY ON THE SURFACE AS WELL AS ON BOARD – WHICH BRING TO THE OPERATOR :

- Easy and aided detection in the case of towed sonar use (surface mode)
- Accelerated transmission of qualified data (radio link crypted transmission)
- Capability to process data inside the AUV in real-time (embedded mode)
- To calibrate and train the ATD on surface and download it into unmanned systems (UUVs) during data aquisition of a new seabed
 - ∟ Reduces false-alerts,
 - ∟ Avoids missing an object
 - ∟ Better targeting of known threats

AUTOMATIC TARGET CLASSIFICATION

AUTOMEASUREMENT & FILTERING

An automatic measurement algorithm is used to determine the dimensions of the contact and prioritize the detected contacts. - Cylinder mine

AIDED CLASSIFICATION

SIMULATION OF INCLINED MINE

For aided classification different modules for analysis and comprehension of contact signature depending on its environment.

AIDED CLASSIFICATION

OBJECT MULTIVIEW SIMULATION

The echo and shadow of a contact may vary depending on its orientation.

On the left, the video shows a rockan seen from different angles. At the top right, the rockan and on the bottom a real sonar view of the rockan (we can see the fins and the

UMISOFT™

COMPREHENSIVE SOFTWARE SUITE

MANY ADVANTAGES FOR MCM OPERATORS

Easy access

- Rich tactical situation for better understanding
- L MCM optimized mission management
- L Automatic proposition of scenario & comparison tools
- Distributed contextual data

Open architecture

- Easy interfaced with ECA Group and third-party drones
- └ Use of standards (S57, S63, AML, MIL-STD 2525C, WMS/WFS, etc.)

Configurability

- L Automatic registration & description of drones
- Option-based model to be adapted according operator's needs

Performance

- Time saving thanks to the creation, optimization and parallelization of tasks
- Proposition of targeted solutions for more efficiency

Cybersecurity

L Client authentification

Encrypted communications

Integration

- Shared services & data
- Complete management of the operational cycle

Scalability

- L Unlimited number of connected drones: USV, AUV, ROV, UAV
- L Unlimited number of client modules
- L Virtually unlimited storage

Real-Time

- └ Dynamic tactical display
- Event handling and schedule update

UMISOFT™

INTEGRATED UNMANNED SYSTEMS

A COMPREHENSIVE MCM TOOLBOX

TOOLBOX BENEFITS

- **FASTER AND SAFER OPERATIONS**
- CAN BE INTEGRATED INTO EXISTING SYSTEMS OR AS A STAND ALONE SOLUTION
- DEPLOYABLE FROM NON DEDICATED SHIPS
- CAN BE CONTAINERISED TO BE AIR-TRANSPORTABLE & DEPLOYABLE FROM SHORE OR NON DEDICATED SHIPS
- MODULAR, ADAPTABLE AND SCALABLE CONFIGURATIONS
- REDUCED COSTS OF OWNERSHIP: COMMON SPARES, TOOLS...

UNMANNED SYSTEMS OF THE FUTURE

MINE DETECTION AND CLASSIFICATION: PAST AND PRESENT

BENEFITS OF SYNTHETIC APERTURE SONAR(SAS)

- A possible mine appears as only an unresolved echo on a detection sonar screen
- If the echo persists over several pings it is declared a mine-like echo (MILEC).
- The next step is to bring the MCMV within range of the classification sonar,
- Need to go around the MILEC to catch a favorable aspect due to lack of resolution.
- This is a very slow process which requires highly trained personnel.
- A SAS makes an ultra-high resolution image of the seabed in a single pass informing on size, shape, shadow and highlight structure.
- This is both effective and fast, ideally suited to AUVs.

MINE IDENTIFICATION: CURRENT AND FUTURE

BENEFITS OF CSAS AND UW LIDAR

- After positive classification as a mine-like contact (MILCO), ID is the next logical step.
- ID is performed today as in the past, with ROVs. It is too slow for the SAS and currently the bottleneck!
- Future systems will automate the collection of ID data using AUVs (DCLI AUVs).
- Relocation is much faster and more reliable using the high performance navigation of the AUV & SAS image.
- ID sensors which offer standoff (e.g. >4m) are key.
 - The SAS can be used again at close range to collect/fuse multiple aspects (CSAS).
 - Long range optical sensors is the enabling technology.
 - Chemical explosive detection is also very useful

CSAS image from NSWC, USA

LONG RANGE OPTICAL IMAGING

BENEFITS OF UW LIDAR

- Blue-green laser illumination is optimal due to seawater absorption spectrum.
- A variety of products exist driven by commercial markets.
- Both imagery and 3D point cloud depth information are provided.
- Limiting optical backscatter in turbid waters is key
- Range gated cameras
- Time of flight lidar
- Scanned laser (rotating mirror)
- Streak Tube Imaging Lidar (STIL from Arete)

Courtesy 3D at depth

UMS OF THE FUTURE

TRENDS

WHAT UMS OF THE FUTURE COULD BRING

- Tools will be multi-mission (classification and identification)
- Improved communication with UUVs for near real-time data acquisition and analysis
- The mission is fully automated
- The mission time is reduced
- The gathered data is more precise
- The operator gets more assistance for decision making