
UDT 2019
Homing Algorithm Optimisation Using Machine Learning

Copyright © 2019 BAE Systems. All Rights Reserved. Page 1 of 4 BAE SYSTEMS is a registered trademark of BAE Systems plc

UDT 2019 – Future Underwater Weapon Tactical/Homing Algorithm
Optimisation Using Machine Learning.

R. Larham1

1BAE Systems, Maritime Services, Broad Oak, Portsmouth, Hants, PO3 5PQ, UK

Abstract — This paper discusses the use of machine learning in the optimisation of underwater weapon

tactical algorithm design. It proposes that in the immediate future this should utilise the ideas and

structure of existing methods, being restricted to the optimisation of the design. It also considers the

relative performance of ML tactics compared to those developed by traditional methods by looking at the

state of ML in computer chess compared to traditionally developed chess engines. Also the HW

requirements for ML tactical design are briefly discussed.

1 Introduction
The performance of an underwater weapon is

determined by the available sensors, environment,

target characteristics, tactics and countermeasures,

weapon kinematic performance, targeting data and

weapon homing algorithms. It is the design process

of the last of these, weapon homing algorithms

(which I will describe as weapon tactics from here

on), that this paper is concerned with. Traditionally

the design and tuning of such algorithms has been

done by humans, but the time has come/fast

approaching to adopt a level of automation of the

process [1]. For weapon tactics a self-learning

neural network approach is not appropriate as we

require that the design/behaviour of the system be

comprehensible to the design team, customer and

operators. What is proposed here is that we adopt a

machine learning/optimisation approach to tuning

designs the basic structure of which is based on

traditional designs.

2 Traditional Tactical Design
The traditional approach to the tactical design, as

practiced by organisations that I have worked at,

generally starts by creating a structure and populate

using design adapted from previous project, or if

new project create dummy structure and stubs for

individual tactics. This could comprise a Tactical

Decision Maker (TDM) and stubs for tactics that are

thought appropriate. Figure 1 and Figure 2 show the

position of tactics within the system and the

structure of a TDM.

Using the system simulation/model as a test harness,

we create an experimental TDM to call a particular

tactic and hand fettle the tactic design until

simulation results for that tactic are judged

satisfactory.

Then repeat for other tactics

When the tactical system is sufficiently populated

we hand optimise the TDM with the tactics.

Repeat until all tactics and TDM calling rules

optimised and hopeful meet the performance

requirements in the contract.

Then test on trials and alternative simulations, and

re-tune if problems found.

One of the problems with this approach is its

dependency on the availability of significant

numbers of experienced competent staff, together

with its cost.

Figure 1: Simplified Torpedo Block Diagram Showing

Where Tactics Sits With Respect To Other Parts of the

System

UDT 2019
Homing Algorithm Optimisation Using Machine Learning

Copyright © 2019 BAE Systems. All Rights Reserved. Page 2 of 4 BAE SYSTEMS is a registered trademark of BAE Systems plc

Figure 2: Structure of Tactics

3 Desirable Features Of Design Methods

In an ideal world we would like to specify the

performance required of the system and use an

automatic process to general weapon/tactical

software which meets that performance requirement

(as nearly as possible).

The specification of performance requirements

should already be available in the traditional

process, as it is part of the acceptance criteria for a

project.

Completely automated design could be done in

principle as long as we can measure how far from

the target performance a design is. In principle, if

fantastically impractically, this could be done using

stochastic search, possibly more practically using

other global optimization heuristics like simulated

annealing, machine learning and/or

evolutionary/genetic algorithms. But any method

that makes no assumptions about the structure of the

design will be impractical for the foreseeable future

and also probably have the undesirable property of

being completely opaque to humans.

In the near term it is desirable to retain the general

structure of the existing designs, confining

optimization to the parameters within the individual

tactics, and the tactic call rules in the TDM.

Caveat: The design of the tactics must be robust

against assumptions of target signatures and tactics

… our systems should do something sensible even

when the target/environment etc. are not something

specified in the contract - we are not here just to

"answer the exam question" (of Contract

Acceptance Simulations). As a partial counter to the

tendency to narrowly design against the requirement

may be to include the target tactics in the

optimisation process, making the optimisation

process analogous to ML the game playing systems

such as Alpha0 [3] and Lela0 (though asymmetric

between players).

4. Expectations
An initial approach to the use of ML in the

algorithm design process has been proposed, which

is to retain the general structure of existing tactical

processing systems, but to use the free parameters in

the design as the components of the design vector

with optimisation conducted using simulated

engagements optimising subsystems sequentially in

a kind of section search optimisation.

Several “toy” problems have been tested, where a

single algorithm has been optimised against a

training set of vignettes both by us and other

organisations (see [2] for an example of area

search). These have given what might be described

as satisfactory results, in the sense that the toy

problems may be tailored to show ML to good

advantage, but the question remains of how well

ML design of the complete system performs

compared to a manually optimised design? Two

examples are shown below in section 6, one from

[2] and another from BAE experiments.

A field in which both highly hand optimised designs

and ML designs exist and have been tried against

one another is Computer Chess. The current star of

ML chess systems is Alpha0 (A0) which uses a deep

neural network trained in self play mode. The

current champion among conventional (hand fettled)

chess systems is Stockfish (Sf) [4]. In a tournament

between A0 and Sf A0 achieved a significantly

(spectacularly) better result than Sf. The validity of

this is disputed as the two engines were not running

on comparable HW nor were the time controls

suited to Sf’s design.

Lela0 (L0) is an attempt to implement the ideas

behind A0 on more usual HW for a chess engine.

This allows L0 (actually LelaChess0 Lc0) and Sf to

compete on a more level playing field under more

normal time controls. Lc0, competed a number of

rounds of the Top Chess Engine Championship in

2018, progressing from moderate results to coming

second behind Stockfish in December 2018 (at time

of writing the superfinal between Sf and Lc0 has

just finished with victory going to Sf 50.5-49.5 but

so close that they are for all intents and purposes of

equal strength on this basis). This is probably the

best comparison of the relative performance to be

expected from highly optimised ML and hand-

fettled systems for the same task on comparable

HW. We may conclude that at present Hand-Fettled

is still competitive, but the effort required to

improve it is much greater than that for Lc0 in self

play learning mode.

UDT 2019
Homing Algorithm Optimisation Using Machine Learning

Copyright © 2019 BAE Systems. All Rights Reserved. Page 3 of 4 BAE SYSTEMS is a registered trademark of BAE Systems plc

Extrapolating this (rather cavalierly) to torpedo

tactic we may take this to indicate that the

performance of ML optimised tactics will be

comparable to hand-fettled tactics. Which approach

will give greater performance will depend on the

effort put into the optimisation.

Comment: There are several features of the

approach to ML utilised in A0 and L0 that if they

can be extended from a discrete to a continuous

problem, could be of interest in underwater weapon

algorithm design. In that while there might not be an

identifiable set of tactics with transition rules would,

given the state of the system, tell you the probability

that it will pursue some course of action and the

value of that action. The promise of quantum

computing and its application to ML might make

this an attractive long term line of research [6].

5. Hardware for ML Tactics Design
When I first started thinking about ML, automated

optimisation of weapon algorithms it was quite clear

that this would involve a massive amount of

computation, perhaps as many as 100 replications

per scenario for something like 100 scenarios per

iteration of the optimisation loop. Each replication

possibly comprising a simulation of an entire

engagement on a detailed simulation. The only

mitigating factor being the problem is that much of

the computation is loosely coupled and highly

parallel and suited to loosely couples multiprocessor

architectures [7].

Fortunately even then (this is something like 15+

years ago) clusters of commodity level (single core)

PCs could be configured suitably for the task. Today

the hardware problem is more tractable with multi-

core processors, or by farming the task out across

the unused CPU cycles on a corporate network.

If we were to go down the route of Deep Neural

Nets then the processing requirements might be

reduced as we do not require complete evaluations

of the objective during the training process. Also the

emerging field of quantum machine learning needs

to be watched.

6. Some Examples of ML Optimised
Tactics Like Algorithms
The first example I want to show is from Kierstead

& DelBalzo’s paper [2] which uses a genetic

algorithm to design an area search plan for a target

in an area where the target detectability varies

across the area. They have a search area

approximately 46x165 nautical miles. The searcher

searches at 15kts for a total of 40 hours. The target

evades at 5kts with 3 hours between course changes

and reflects off of the search area boundaries. They

compare the Genetic Algorithm generated search

path with a standard ladder search, and an optimised

ladder search (see Figure 3 below). They find that

the GA search has a CPD of 35% compared to 29%

for the best ladder and 24% for the standard ladder.

This shows the GA search to advantage.

It should be remarked that a more modern particle

based approach + greedy algorithm would probably

do at least as well as the GA does here.

Figure 3: Plots of Sweep Width, and Search Patterns From

[2] Figure 9.

The second example is from some experiments I

conducted in 2007 on the optimisation of part of the

terminal homing phase of a torpedo. The objective

is to minimise a combination of the probability of

UDT 2019
Homing Algorithm Optimisation Using Machine Learning

Copyright © 2019 BAE Systems. All Rights Reserved. Page 4 of 4 BAE SYSTEMS is a registered trademark of BAE Systems plc

losing contact and accuracy of the delivery point

over the space of target speeds, turn rates and initial

geometry etc, and the weapon is manoeuvring to

achieve this. In the sample plot one instance is

shown with the target at 30kts and turning at 3°/s..

The plot shows the probability of achieving the

desired result (remaining in contact and achieving

an acceptable geometry at exit) for this instance.

The big dip in probability of success seen in the

hand optimised algorithm is due to the algorithm

getting confused when the torpedo crosses the target

axis. One might observe that a more competent

designer would have realised this and modified tha

algorithm accordingly, but even without the dip the

hand optimised algorithm is worse than the ML

optimised algorithm. In this example I used

stochastic search as the optimisation/learning

algorithm mainly because it is the one global

optimisation algorithm with provable albeit slow

convergence, and I was not particularly concerned

with efficiency of the learning process due to a

relatively small search space in this example.

Figure 4: Plots showing the performance of the hand

optimised for the second example.

References
[1] G. Kendall, Evolutionary computation has been

promising self-programming machines for 60

years – so where are they?, The Conversation,

March 2016.

https://theconversation.com/evolutionary-

computation-has-been-promising-self-

programming-machines-for-60-years-so-where-

are-they-91872

[2] Kierstead & DelBalzo, A Genetic Algorithm

Applied to Planning Search Paths in

Complicated Environments, MOR 8 #2 2003

pp45-59

Figure 5: Plots showing the performance of the ML

optimised algorithm for the second example.

 [3] Silver, D., Hubert, T., Schrittwieser, J., A

general reinforcement learning algorithm that

masters chess, shogi, and go through self-play.

Science. 362 (6419): 1140–1144, Dec 2018.

[4] Wikipedia Contributers, Stockfish (chess),

Wikipedia, The Free Encyclopedia, Date

retrieved: 29 January 2019 09:42 UTC,

 https://en.wikipedia.org/w/index.php?title=Stock

fish_(chess)&oldid=880149074

[5] Silver A., Leela Chess Zero: AlphaZero for the

PC, Chess Base News, 26th April 2018,

 https://en.chessbase.com/post/leela-chess-zero-

alphazero-for-the-pc

[6] Shaw, R., Quantum Machine Learning: An

Overview, KDnuggets, January 2018,

 https://www.kdnuggets.com/2018/01/quantum-

machine-learning-overview.html

[7] Wikipedia Contributors, Multiprocessing,

Wikipedia, The Free Encyclopaedia, 11 February

2019 10:48 UTC,

 https://en.wikipedia.org/w/index.php?title=Multi

processing&oldid=881304958

.

