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Abstract — This paper discusses the use of machine learning in the optimisation of underwater weapon 

tactical algorithm design. It proposes that in the immediate future this should utilise the ideas and 

structure of existing methods, being restricted to the optimisation of the design. It also considers the 

relative performance of ML tactics compared to those developed by traditional methods by looking at the 

state of ML in computer chess compared to traditionally developed chess engines. Also the HW 

requirements for ML tactical design are briefly discussed.

1 Introduction 
The performance of an underwater weapon is 

determined by the available sensors, environment, 

target characteristics, tactics and countermeasures, 

weapon kinematic performance, targeting data and 

weapon homing algorithms. It is the design process 

of the last of these, weapon homing algorithms 

(which I will describe as weapon tactics from here 

on), that this paper is concerned with. Traditionally 

the design and tuning of such algorithms has been 

done by humans, but the time has come/fast 

approaching to adopt a level of automation of the 

process [1]. For weapon tactics a self-learning 

neural network approach is not appropriate as we 

require that the design/behaviour of the system be 

comprehensible to the design team, customer and 

operators. What is proposed here is that we adopt a 

machine learning/optimisation approach to tuning 

designs the basic structure of which is based on 

traditional designs. 
 

2 Traditional Tactical Design 
The traditional approach to the tactical design, as 

practiced by organisations that I have worked at, 

generally starts by creating a structure and populate 

using design adapted from previous project, or if 

new project create dummy structure and stubs for 

individual tactics. This could comprise a Tactical 

Decision Maker (TDM) and stubs for tactics that are 

thought appropriate. Figure 1 and Figure 2 show the 

position of tactics within the system and the 

structure of a TDM. 

 

Using the system simulation/model as a test harness, 

we create an experimental TDM to call a particular 

tactic and hand fettle the tactic design until 

simulation results for that tactic are judged 

satisfactory. 

Then repeat for other tactics 

When the tactical system is sufficiently populated 

we hand optimise the TDM with the tactics. 

Repeat until all tactics and TDM calling rules 

optimised and hopeful meet the performance 

requirements in the contract. 

Then test on trials and alternative simulations, and 

re-tune if problems found. 

One of the problems with this approach is its 

dependency on the availability of significant 

numbers of experienced competent staff, together 

with its cost. 

 

Figure 1: Simplified Torpedo Block Diagram Showing 

Where Tactics Sits With Respect To Other Parts of the 

System 
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Figure 2: Structure of Tactics 

 

3 Desirable Features Of Design Methods 

In an ideal world we would like to specify the 

performance required of the system and use an 

automatic process to general weapon/tactical 

software which meets that performance requirement 

(as nearly as possible). 

The specification of performance requirements 

should already be available in the traditional 

process, as it is part of the acceptance criteria for a 

project. 

Completely automated design could be done in 

principle as long as we can measure how far from 

the target performance a design is. In principle, if 

fantastically impractically, this could be done using 

stochastic search, possibly more practically using 

other global optimization heuristics like simulated 

annealing, machine learning and/or 

evolutionary/genetic algorithms. But any method 

that makes no assumptions about the structure of the 

design will be impractical for the foreseeable future 

and also probably have the undesirable property of 

being completely opaque to humans. 

In the near term it is desirable to retain the general 

structure of the existing designs, confining 

optimization to the parameters within the individual 

tactics, and the tactic call rules in the TDM. 

Caveat: The design of the tactics must be robust 

against assumptions of target signatures and tactics 

… our systems should do something sensible even 

when the target/environment etc. are not something 

specified in the contract - we are not here just to 

"answer the exam question" (of Contract 

Acceptance Simulations). As a partial counter to the 

tendency to narrowly design against the requirement 

may be to include the target tactics in the 

optimisation process, making the optimisation 

process analogous to ML the game playing systems 

such as Alpha0 [3] and Lela0 (though asymmetric 

between players). 

4. Expectations 
An initial approach to the use of ML in the 

algorithm design process has been proposed, which 

is to retain the general structure of existing tactical 

processing systems, but to use the free parameters in 

the design as the components of the design vector 

with optimisation conducted using simulated 

engagements optimising subsystems sequentially in 

a kind of section search optimisation. 

 

Several “toy” problems have been tested, where a 

single algorithm has been optimised against a 

training set of vignettes both by us and other 

organisations (see [2] for an example of area 

search). These have given what might be described 

as satisfactory results, in the sense that the toy 

problems may be tailored to show ML to good 

advantage, but the question remains of how well 

ML design of the complete system performs 

compared to a manually optimised design? Two 

examples are shown below in section 6, one from 

[2] and another from BAE experiments. 

 

A field in which both highly hand optimised designs 

and ML designs exist and have been tried against 

one another is Computer Chess. The current star of 

ML chess systems is Alpha0 (A0) which uses a deep 

neural network trained in self play mode. The 

current champion among conventional (hand fettled) 

chess systems is Stockfish (Sf) [4]. In a tournament 

between A0 and Sf A0 achieved a significantly 

(spectacularly) better result than Sf. The validity of 

this is disputed as the two engines were not running 

on comparable HW nor were the time controls 

suited to Sf’s design. 

 

Lela0 (L0) is an attempt to implement the ideas 

behind A0 on more usual HW for a chess engine. 

This allows L0 (actually LelaChess0 Lc0) and Sf to 

compete on a more level playing field under more 

normal time controls. Lc0,  competed a number of 

rounds of the Top Chess Engine Championship in 

2018, progressing from moderate results to coming 

second behind Stockfish in December 2018 (at time 

of writing the superfinal between Sf and Lc0 has 

just finished with victory going to Sf 50.5-49.5 but 

so close that they are for all intents and purposes of 

equal strength on this basis). This is probably the 

best comparison of the relative performance to be 

expected from highly optimised ML and hand-

fettled systems for the same task on comparable 

HW. We may conclude that at present Hand-Fettled 

is still competitive, but the effort required to 

improve it is much greater than that for Lc0 in self 

play learning mode. 
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Extrapolating this (rather cavalierly) to torpedo 

tactic we may take this to indicate that the 

performance of ML optimised tactics will be 

comparable to hand-fettled tactics. Which approach 

will give greater performance will depend on the 

effort put into the optimisation. 

 

Comment: There are several features of the 

approach to ML utilised in A0 and L0 that if they 

can be extended from a discrete to a continuous 

problem, could be of interest in underwater weapon 

algorithm design. In that while there might not be an 

identifiable set of tactics with transition rules would, 

given the state of the system, tell you the probability 

that it will pursue some course of action and the 

value of that action. The promise of quantum 

computing and its application to ML might make 

this an attractive long term line of research [6]. 
 

5. Hardware for ML Tactics Design 
When I first started thinking about ML, automated 

optimisation of weapon algorithms it was quite clear 

that this would involve a massive amount of 

computation, perhaps as many as 100 replications 

per scenario for something like 100 scenarios per 

iteration of the optimisation loop. Each replication 

possibly comprising a simulation of an entire 

engagement on a detailed simulation. The only 

mitigating factor being the problem is that much of 

the computation is loosely coupled and highly 

parallel and suited to loosely couples multiprocessor 

architectures [7].  

 

Fortunately even then (this is something like 15+ 

years ago) clusters of commodity level (single core) 

PCs could be configured suitably for the task. Today 

the hardware problem is more tractable with multi-

core processors, or by farming the task out across 

the unused CPU cycles on a corporate network. 

 

If we were to go down the route of Deep Neural 

Nets then the processing requirements might be 

reduced as we do not require complete evaluations 

of the objective during the training process. Also the 

emerging field of quantum machine learning needs 

to be watched. 
 

6. Some Examples of ML Optimised 
Tactics Like Algorithms 
The first example I want to show is from Kierstead 

& DelBalzo’s paper [2] which uses a genetic 

algorithm to design an area search plan for a target 

in an area where the target detectability varies 

across the area. They have a search area 

approximately 46x165 nautical miles. The searcher 

searches at 15kts for a total of 40 hours. The target 

evades at 5kts with 3 hours between course changes 

and reflects off of the search area boundaries. They 

compare the Genetic Algorithm generated search 

path with a standard ladder search, and an optimised 

ladder search (see Figure 3 below). They find that 

the GA search has a CPD of 35% compared to 29% 

for the best ladder and 24% for the standard ladder. 

This shows the GA search to advantage. 

 

It should be remarked that a more modern particle 

based approach + greedy algorithm would probably 

do at least as well as the GA does here. 
 

 
Figure 3: Plots of Sweep Width, and Search Patterns From 

[2] Figure 9. 

The second example is from some experiments I 

conducted in 2007 on the optimisation of part of the 

terminal homing phase of a torpedo. The objective 

is to minimise a combination of the probability of 
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losing contact and accuracy of the delivery point 

over the space of target speeds, turn rates and initial 

geometry etc, and the weapon is manoeuvring to 

achieve this. In the sample plot one instance is 

shown with the target at 30kts and turning at 3°/s.. 

The plot shows the probability of achieving the 

desired result (remaining in contact and achieving 

an acceptable geometry at exit) for this instance. 

The big dip in probability of success seen in the 

hand optimised algorithm is due to the algorithm 

getting confused when the torpedo crosses the target 

axis. One might observe that a more competent 

designer would have realised this and modified tha 

algorithm accordingly, but even without the dip the 

hand optimised algorithm is worse than the ML 

optimised algorithm. In this example I used 

stochastic search as the optimisation/learning 

algorithm mainly because it is the one global 

optimisation algorithm with provable albeit slow 

convergence, and I was not particularly concerned 

with efficiency of the learning process due to a 

relatively small search space in this example. 
 

 
Figure 4: Plots showing the performance of the hand 

optimised for the second example. 
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