
Kubernetes

Security Best Practices

March 2020

IONOS Enterprise Cloud

www.ionos.co.uk/enterprise-cloud/

Lorenzo Galelli
Snr Cloud Solution Architect

@Virtually_LG
virtuallylg.com

Cloud Native Journey

Kubernetes & Cloud Native Challenges

■ Managing, maintaining, upgrading kubernetes control plane
○ API Server, etcd, scheduler etc..

■ Managing, maintaining, upgrading kubernetes data plane
○ In place upgrades, deploy parallel cluster etc.

■ Figure out container network & storage
○ Overlays, persistent storage etc… - it should just work

■ Managing teams
○ How do I manage & control team access to my cluster

■ Security, security and security

How are teams addressing complexity & training issues

Which brings us to SECURITY

Common Vulnerabilities and Exposures (CVE)

■ runC, the most commonly used low-level container runtime in Docker and
Kubernetes environments.

■ Vulnerability in runC, which allows host-level code execution breaking out of a
running container

○ Discovered and reported by Adam Iwaniuk and Borys Poplawski in early January
and published as CVE-2019-5736 on 11 February 2019.

■ Significant vulnerability:

○ Enables container isolation breakout with minimal interaction from an
authorized host user;

○ Typically allows an attacker to obtain root privileges on the host;

○ Negatively impacts most container environments because many containers run
with default Docker security settings and default user (UID 0)

https://www.ianlewis.org/en/container-runtimes-part-2-anatomy-low-level-contai
https://github.com/opencontainers/runc
https://nvd.nist.gov/vuln/detail/CVE-2019-5736

Crypto hacking Tesla’s Kube

■ Crypto-currency mining using large amounts of computer processing power

■ Hackers using systems for crypto-jacking.

■ Crypto-jacking becoming more widespread,

■ Hackers compromised services offered by Starbucks, YouTube and the UK's Information
Commissioner's Office.

■ Hackers discovered log-in details to Tesla's Amazon Web Services environment on a Kubernetes
console

○ The console was reportedly not password-protected.

It’s not just Tesla

Do you have an upgrade strategy

■ CVEs are typically fixed in new minor releases….

■ Don’t treat K8s as install once and run forever

■ Make your K8s install repeatable and on different versions

■ Or use a managed service provider

○ Either automatically upgrade for you and assist through the
process

9

Securing the Control Plane

Enable RBAC with Least Privilege, Disable ABAC, and Monitor Logs

■ Probably one of the most overlooked issues with Kubernetes.
○ Need to deal with authorization on multiple levels.

■ Authorization requirements come from
○ images, configuration files, third-party applications and services, various developers and/or

users… the list of possible authorizations goes on and on.

■ Permissions in Kubernetes is handled by role-based access control (RBAC).

■ Powerful, fine-grained control over authorization and access. The RBAC API declares four top-level
types:

○ Role can only be used to grant access to resources within a single namespace;
○ ClusterRole adds cluster-scoped resources, non-resource endpoints, and namespaced

resources to the Role type;
○ RoleBinding grants permissions defined in a role to a user or set of users; and
○ ClusterRoleBinding is the same as RoleBinding, but across a cluster.

■ Imperative that every K8s admin understand RBAC authorization

■ Be aware of ABAC authorization method, does include operational constraints. Nobody uses it
anymore

kind: ClusterRoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

name: example-clusterrolebinding

subjects:

- kind: User

name: example-user

apiGroup: rbac.authorization.k8s.io

roleRef:

kind: ClusterRole

name: example-clusterrole

apiGroup: rbac.authorization.k8s.io

kind: ClusterRole

apiVersion: rbac.authorization.k8s.io/v1

metadata:

name: example-clusterrole

rules:

- apiGroups: [""]

resources: ["pods"]

verbs: ["get", "watch", "list"]

Keeping Control Plane Fit and Healthy

■ (Transport Layer Security) TLS Everywhere

○ TLS should be enabled for every component that supports it to prevent traffic
sniffing,

○ Verify the identity of the server, and (for mutual TLS) verify the identity of the
client.

■ Upgrade to the Latest Version K8s where possible.

○ New security features, not just bug fixes

○ Added in every quarterly update

■ Upgrades and support become more difficult the further behind you fall,

○ Plan to upgrade at least once per quarter

○ Using a managed Kubernetes provider can make upgrades very easy.

Namespace is your friend

■ Use Namespaces to Establish Security Boundaries

■ Creating separate namespaces

○ Important first level of isolation between components.

○ Easier to apply security controls such as Network Policies when different types of
workloads are deployed in separate namespaces.

■ Is your team using namespaces effectively? Find out now by checking for any non-
default namespaces:

Harden Node Security

Follow these three steps to improve the security posture on your nodes:

■ Ensure the host is secure and configured correctly.

○ Check your configuration against CIS Benchmarks; many products feature an autochecker
that will assess conformance with these standards automatically.

■ Control network access to sensitive ports.

○ Make sure that your network blocks access to ports used by kubelet, including 10250 and
10255.

○ Consider limiting access to the Kubernetes API server except from trusted networks.

○ Avoid being the next News headline.

■ Minimize administrative access to Kubernetes nodes.

○ Access to the nodes in your cluster should generally be restricted — debugging and other
tasks can usually be handled without direct access to the node.

■ Look to use tools like kube-bench, kube-audit, kube-hunter and kubesec

Enable Audit Logging

■ Turn on Audit Logging

■ Make sure you have audit logs enabled and are monitoring them for anomalous or
unwanted API calls,

○ Especially any authorization failures

○ Log entries will have a status message “Forbidden.” Authorization failures could mean
that an attacker is trying to abuse stolen credentials.

■ Read requests such as get, list, and watch, only the request object is saved in the audit logs

○ Response object is not.

○ Requests involving sensitive data such as Secret and ConfigMap, only metadata is
exported.

○ All other requests, both request and response objects are saved in audit logs.

■ Keeping these logs inside the cluster is a security threat in case of compromise.

○ Should be transported outside the cluster to prevent tampering in the event of a
breach.

■ Use an encryption provider for secrets and use secrets for secrets and not for config maps.

{

"kind":"Event",

"apiVersion":"audit.k8s.io/v1beta1",

"metadata":{ "creationTimestamp":"2018-03-21T21:47:07Z" },

"level":"Metadata",

"timestamp":"2018-03-21T21:47:07Z",

"auditID":"20ac14d3-1214-42b8-af3c-31454f6d7dfb",

"stage":"RequestReceived",

"requestURI":"/api/v1/namespaces/default/persistentvolumeclaims"
,

"verb":"list",

"user": {

"username":“lorenzo.galelli@example.org",

"groups":["system:authenticated"]

},

"sourceIPs":[“77.68.66.233"],

"objectRef": {

"resource":"persistentvolumeclaims",

"namespace":"default",

"apiVersion":"v1"

},

"requestReceivedTimestamp":"2020-03-02T21:47:07.603214Z",

"stageTimestamp":"2020-03-02T21:47:07.603214Z"

}

Securing the Workloads

K8s Cluster Details

• Although the microservices design pattern that powers
containerized applications underlies many of the benefits of
containerization, it also creates security blind spots and
increases your attack surface. As more containers are
deployed, maintaining adequate visibility into your critical
cloud-native infrastructure components becomes more
difficult. The distributed nature of containerized apps makes
it difficult to quickly investigate which containers might
have a newly discovered zero-day vulnerability, which ones
are running as privileged, or other factors.

Containers are numerous and everywhere

K8s Cluster Details

■ Isolate your pods

○ Apply at least one network policy to every pod to ensure isolation

○ Remove the related application to both lateral and north-south threats.

○ Apply a “deny all” policy to all pods as a default first step.

■ Explicitly allow Internet access for pods using labels that need it

○ Associate the labels with the pods that require Internet reachability

○ Create a network policy that targets those labels.

■ Explicitly allow necessary pod-to-pod communication

○ Limit security risk by allowing pods within the same namespace to freely communicate
with each other.

■ Separate Sensitive Workloads

○ Run sensitive workloads on a dedicated set of machines.

○ Reduces the risk of a sensitive application being accessed through a less-secure
application that shares a container runtime or host. ies to steal them.

Pod Security

Admission Controllers

■ Prevent risky configuration with PodSecurityPolicy

○ Arguably the most important one from a security perspective.

○ Defines a set of conditions a pod must run with to be accepted in the system.

○ Pod security policies can be used to prevent containers from running as root or to make
sure the container’s root filesystem is mounted read-only.

○ Think of PodSecurityPolicy as authorization for Pods

■ Run a Cluster-wide Pod Security Policy

○ Pod Security Policy sets defaults for how workloads are allowed to run in your cluster.

○ Consider defining a policy and enabling the Pod Security Policy admission controller..

■ Enforce image registry governance

○ Admission controllers can be used to allow images to be pulled from trusted registries while
denying all untrusted image registries.

■ Ensure adherence to good DevOps practices

○ Admission controllers can be used to enforce internal policies for use of labels on various
objects or consistently adding annotations to objects.

K8s Cluster Details

• Images and image registries, when misused, can pose
security issues - organizations need a strong governance
policy around using trusted image registries. Ensuring that
only images from whitelisted image registries are being
pulled in your environment can be challenging but must be
part of any container and Kubernetes security strategy along
with more advanced security best practices such as ensuring
images are scanned for vulnerabilities frequently and any
image not scanned within X number of days is rejected.

Images are numerous and everywhere

Image Security

■ Know your base image when building containers

○ When in doubt stick to official images

○ Or start from a sane built image like alpine linux

■ Smaller the image the better

○ Less surface to attack

○ Quicker to push, quicker to pull

■ Don’t rely on :latest TAG

○ Latest image today might not be the latest tomorrow

■ Know the specific version you are working with

○ If there is a new vulnerability announced for OS version x.1.0 you will have immediate
visibility

■ Check for vulnerabilities regularly

■ Be wary of images that require broad access to paths on the host

What else can you be doing, Can you answer these questions confidently

■ Where are images used in containers coming from?

■ How long ago were the images scanned for vulnerabilities?

■ Which of your containers are impacted by known vulnerabilities, and what’s their severity?

■ Are any of these containers in production impacted by a known vulnerability?

■ Which vulnerable running containers or deployments should be prioritize first for remediation?

■ Which deployments are using privileged containers, meaning they have full access to the host
operating system?

■ What container applications services are exposed outside of the Kubernetes cluster?

■ Can we tell which processes are running in any container in any cluster?

■ Which network communication pathways are active but are not being used in production?

■ Which running deployment have had an adversary attempt to run a specific runtime exploit?

■ What team in the organization owns a particular running application?

Thank You!

Lorenzo Galelli

Senior Cloud Solution Architect

Lorenzo.Galelli@cloud.ionos.co.uk

