
O P T I M I S N G

A R C H I T E C T U R E F O R

O P E R A T I O N A L

C O N C E R N S
PRESENTED BY:RYAN FRENCH
LEAD CLOUD PLATFORM ENGINEER

11TH MARCH 2020

A B O U T
Y O U V I E W

Strictly private, confidential & commercially sensitive: Please do not forward

• Joint venture between some of the
UK’s leading media and telecoms
businesses

• Content discovery platform with
content from some of the biggest
names in media

P A G E 2

A B O U T
Y O U V I E W

• Platform behind BT TV, TalkTalk and
Sony Android TVs for millions of
homes across the UK

• Cloud first company

• Third party integration

P A G E 3

NEXT GENERATION USER
EXPERIENCE

Strictly private, confidential & commercially sensitive: Please do not forward

• In early 2015, we began a redesign of our

platform, moving logic out of the box and in to

the cloud

• In November 2016, YouView Launched our award
winning re-engineered and redesigned platform

• As part of the redesign, we moved out of a
physical datacentre and moved into AWS

• We also changed how we worked, moving in to
small, cross-functional, agile teams

P A G E 4

CHAPTER TITLE

M Y R O L E

• Lead Cloud Platform engineer with >10 years experience

• Joined YouView July 2015

• Designed and built cloud services for Next Gen platform

• Early 2017 became Tech Lead of Cloud Platform team

P A G E 50 0 / 0 0 / 0 0 0 0

O U R
P L A T F O R M

• Millions of Active Connected Devices

• 6B requests per day to edge

• 300M requests per day to origin

• 1.1M max TPM at origin

• 200k average TPM at origin

• 600+ servers

• 100+ micro services

• 40 cloud service developers

• 50+ AWS services

• 6 programming languages

P A G E 6

W H A T A R E O P E R A T I O N A L C O N C E R N S ?

P A G E 7

RELIABILITY MAINTENANCE OBSERVABILITY COST SECURITY

S O W H E R E D O Y O U S T A R T ?

P A G E 8

T H E C L I E N T
• Communication

• Request/Response

• Eventually Consistent

• Push Messaging

• Avoid synchronized calls

• HTTP/2

• Error handling

• Retry logic with exponential backoff

• Randomisation with Jitter

• Page Composition

• Separate static assets from personailised data

• Pre-emptive painting

• Disconnect UI feedback from the backend
P A G E 9

P A G E 1 0

M I C R O S E R V I C E
A R C H I T E C T U R E

• Define service boundaries – it’s better to go too big

than too small

• Strong contract testing is a must

• Lines of Code DO NOT MATTER

• Loosely couple with pub/sub and replicated data

S I G N S Y O U G O T Y O U R B O U N D A R I E S
W R O N G
• Your service has a runtime dependency on another service

• Your service has a deployment-time dependency on another service

• You cannot contract test your service in isolation

• If your service goes down, another service will fail

• Adding or fixing existing functionality requires modifying multiple repos

• If your service reads another services data store

P A G E 1 1

I N T E R - S E R V I C E C O M M U N I C A T I O N

• Don’t daisy-chain or aggregate requests whenever it can be avoided

• Every hop in the network is a chance to fail

• If any request in a daisy-chain or aggregation fails, it’s a failed request

• Adopt an eventually consistent model

• Data stream technologies, like Kafka, or Pub/Sub technologies, like AMQP, allow for easy decoupling of

services

• If your service requires data from another service to work, it should have it’s own local copy

• If you simply can’t duplicate your data, or avoid a runtime dependency, then return what data you can, and

have your client retrieve the rest of the data

P A G E 1 2

M I C R O S E R V I C E S – N O T A S I L V E R
B U L L E T

The Problems

• Duplicate code

• Boilerplate code

• Infrastructure as Code

• Deployment pipelines

• Inconsistencies in implementation

• Large maintenance overhead

• Shared bugs

The Solutions

• Shared libraries

• Generate new services from templates

• Remote templates for infrastructure as

code

• Centralised Ownership

• Automated CI/CD

P A G E 1 3

P A G E 1 4

O B S E R V A B I L I T Y

• Monitor everything

• Expect to spend 10-20% of your operating budget on

monitoring

• Differentiate between what should be real time, and

what can be delayed

D I S T R I B U T E D T R A C I N G

P A G E 1 5

• Improves observability

• Easily find bottlenecks and broken services

• A service map can be a good indicator of

accidental coupling

C O S T

P A G E 1 6

DATABASES DEVELOPER
EXPERIMENTS

LARGE TRAFFIC
SPIKES

OVER-PROVISIONED
SERVERS

T H A N K Y O U

