e
OPTIMISNG
ARCHITECTURE FOR
OPERATIONAL

CONCERNS

PRESENTED BY:RYAN FRENCH
LEAD CLOUD PLATFORM ENGINEER
11TH MARCH 2020

»

ABOUT
YOUVIEW

T_H E B : I‘ v o 0)’ P .+ Joint venture between some of the
1E 3 : ‘ UK’s leading media and telecoms
E ‘ P ER' C E £ y +~ B businesses

* Content discovery platform with
content from some of the biggest
names in media

o e

S BTE TakTak arqiva

PAGE :

ABOUT “TANGS Watchiisy
YOUVIEW

Platform behind BT TV, TalkTalk and BEL IN GREY
Sony Android TVs for millions of P Programme Title
homes across the UK — D

Cloud first company LABEL IN GREY

® Programme Title

Third party integration . e,

LABEL IN GREY

e me Title

® Progrom

o6 DELETE
INFO

LABEL IN GREY
® Programme Title

- 5
. Dave

LABEL IN GREY
® Programme Title

LABEL IN GREY S8
@ Programme TItE

o LOCKIUNLOCK

PO L W

LABEL TN GREY

0] Fvcgw'*'ﬂ‘ Title

amg'\ \J }N

s ik

e
Players & Apps MyTV BT Discover Settings
one 13V : F S TWO

® The Farmers' Co ® New: Tipping Point ® A Place in the Su... ® The

® A Stranger with ..

® Bowls: World Ch...

In early 2015, we began a redesign of our
platform, moving logic out of the box and in to

the cloud

In November 2016, YouView Launched our award
winning re-engineered and redesigned platform

As part of the redesign, we moved out of a
physical datacentre and moved into AWS

We also changed how we worked, moving in to
small, cross-functional, agile teams

PAGE 4

Lead Cloud Platform engineer with >10 years experience

Joined YouView July 2015

Designed and built cloud services for Next Gen platform

Early 2017 became Tech Lead of Cloud Platform team

Homeland

(> Wa i\ ® Record () Watch live in HD

Series 5: EP9: Crossfire

CHANNEL &, TODAY, ££V

i 3 ies with Abu Nozir, Brody fin
After his attempt to sever ties with Abu

OUR

mPLATFORM

Millions of Active Connected Devices
6B requests per day to edge

300M requests per day to origin
1.1M max TPM at origin

200k average TPM at origin

600+ servers

100+ micro services

40 cloud service developers

50+ AWS services

6 programming languages

PAGE &

WHAT ARE OPERATIONAL CONCERNS-

O ¢ o

RELIABILITY MAINTENANCE OBSERVABILITY COST SECURITY

PAGE 7

SO WHERE DO YOU START-

PAGE &

THE CLIENT

* Communication

° Request/Response
° Eventually Consistent
* Push Messaging
* Avoid synchronized calls
* HTTP/2
* Error handling
* Retry logic with exponential backoff

* Randomisation with Jitter
* Page Composition

* Separate static assets from personailised data
* Pre-emptive painting

. Disconnect Ul feedback from the backend
PAGE »

RoleResponse, err := svc.AssumeRole(input)

- 1= nil {

err, ok := err.(awserr.Error); ok {

vitch aerr.Code() {

1se sts.ErrCodeMalformedPolicyDocumentException:

log.WithError{aerr).
Errorln(sts.ErrCodeMalformedPolicyDocumentException)

1se¢ 5t5.ErrCodePackedPolicyToolargeException:

log.WithError(aerr).
Errorln(sts.ErrCodePackedPolicyTooLargeException)

15e¢ 5t5.ErrCodeRegionDisabledException:

log.WithError(aerr).
Errorln(sts.ErrCodeRegionDisabledException) |

s fault: |

log.WithError(aerr). |
Errorln(sts.ErrCodeRegionDisabledException)

se {
1g.WithError{err]).
Errorln{"Error assuming role")

Exit(1)

d := exec.Command{args[@], args[1:]...)

1d.Stdout = ps.Stdout

id.Stderr = os.Stderr

id.Env = append({os.Environ(},

Sprintf("AWS_ACCESS_KEY_ID=%s", *assumeRoleResponse.Credentials.AccessKeyId),
Sprintf("AWS_SECRET_ACCESS_KEY=%s", *assumeRoleResponse.Credentials.SecretAcci

Sprintf("AWS_SESSION TOKEN=%s", *assumeRoleResponse.Credentials.SessionToken))

- = command.Run(); err != nil {

ithField{"command", command.Args).
ithError{err).
italln("Failed to run command")

MICROSERVICE
ARCHITECTURE

Define service boundaries —it’s better to go too big
than too small

Strong contract testing is a must

Lines of Code DO NOT MATTER

Loosely couple with pub/sub and replicated data

PAGE

10

SIGNS YOU GOT YOUR BOUNDARIES
WRONG

* Your service has a runtime dependency on another service

* Your service has a deployment-time dependency on another service

* You cannot contract test your service in isolation

* If your service goes down, another service will fail

* Adding or fixing existing functionality requires modifying multiple repos

» |If your service reads another services data store

PAGE 11

Don’t daisy-chain or aggregate requests whenever it can be avoided
Every hop in the network is a chance to fail

If any request in a daisy-chain or aggregation fails, it’s a failed request
Adopt an eventually consistent model
Data stream technologies, like Kafka, or Pub/Sub technologies, like AMQP, allow for easy decoupling of
services
If your service requires data from another service to work, it should have it’s own local copy
If you simply can’t duplicate your data, or avoid a runtime dependency, then return what data you can, and

have your client retrieve the rest of the data

PAGE 12

MICROSERVICES
BULLET

The Problems

Duplicate code
* Boilerplate code
* Infrastructure as Code

* Deployment pipelines

Inconsistencies in implementation

e Large maintenance overhead

Shared bugs

- NOT A SILVER

The Solutions
e Shared libraries
* Generate new services from templates
* Remote templates for infrastructure as
code
* Centralised Ownership

e Automated CI/CD

PAGE 13

Gateway responses

Wvw-/‘\V/-A»\de\w__w\/th\M\
01:30 02:00 02:30 03:00

=201 =200

status

hostname.keyword
yv1-api.youview.tv

yv1-api.youview.tv

yv1-api.youview.tv

api.youview.tv

trials-confiauration.vouview.tv

tus

© Last 24 hours

Count »

12.74K

187K

161K

586.00
396.00

O Last 24 hours

Count

267K

226K

1.19K

377.00

289.00

04:00

04:30 05:00 05:30 06:00

40
30
20

10 L):Jf W}U“‘ ‘/\'JV‘ W Nflj.:ﬁ‘f\(\'&wd okt ,‘; MM'J”‘\L\)Lw‘ /\th\\ Aﬁ

ov VY AA IV AN s

23:00 00:00 01:00 02:00 \
— 404 — 403
200
150
100
50
23:00 00:00 01:00 02:00

== 504 =503 == 502

OBSERVABILITY

* Monitor everything

* Expect to spend 10-20% of your operating budget on
monitoring

* Differentiate between what should be real time, and

what can be delayed

PAGE 14

DISTRIBUTED TRACING

* Improves observability

* Easily find bottlenecks and broken services
'
7 * Aservice map can be a good indicator of
N\ accidental coupling

it
©

PAGE 15

COST
— ' s L)
= 'y s
DATABASES DEVELOPER LARGE TRAFFIC OVER-PROVISIONED

EXPERIMENTS SPIKES SERVERS

PAGE 16

»— THANK YOU

