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In early 2015, we began a redesign of our
platform, moving logic out of the box and in to

the cloud

In November 2016, YouView Launched our award
winning re-engineered and redesigned platform

As part of the redesign, we moved out of a
physical datacentre and moved into AWS

We also changed how we worked, moving in to
small, cross-functional, agile teams
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Lead Cloud Platform engineer with >10 years experience

Joined YouView July 2015

Designed and built cloud services for Next Gen platform

Early 2017 became Tech Lead of Cloud Platform team
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OUR

mPLATFORM

Millions of Active Connected Devices
6B requests per day to edge

300M requests per day to origin
1.1M max TPM at origin

200k average TPM at origin

600+ servers

100+ micro services

40 cloud service developers

50+ AWS services

6 programming languages
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WHAT ARE OPERATIONAL CONCERNS-

O ¢ o

RELIABILITY MAINTENANCE  OBSERVABILITY COST SECURITY
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SO WHERE DO YOU START-
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THE CLIENT

*  Communication

° Request/Response
°  Eventually Consistent
*  Push Messaging
*  Avoid synchronized calls
*  HTTP/2
* Error handling
*  Retry logic with exponential backoff

*  Randomisation with Jitter
* Page Composition

*  Separate static assets from personailised data
*  Pre-emptive painting

. Disconnect Ul feedback from the backend
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RoleResponse, err := svc.AssumeRole(input)

- 1= nil {

err, ok := err.(awserr.Error); ok {

vitch aerr.Code() {

1se sts.ErrCodeMalformedPolicyDocumentException:

log.WithError{aerr).
Errorln(sts.ErrCodeMalformedPolicyDocumentException)

1se¢ 5t5.ErrCodePackedPolicyToolargeException:

log.WithError(aerr).
Errorln(sts.ErrCodePackedPolicyTooLargeException)

15e¢ 5t5.ErrCodeRegionDisabledException:

log.WithError(aerr).
Errorln(sts.ErrCodeRegionDisabledException) |

s fault: |

log.WithError(aerr). |
Errorln(sts.ErrCodeRegionDisabledException)

se {
1g.WithError{err]).
Errorln{"Error assuming role")

Exit(1)

d := exec.Command{args[@], args[1:]...)

1d.Stdout = ps.Stdout

id.Stderr = os.Stderr

id.Env = append({os.Environ(},

Sprintf("AWS_ACCESS_KEY_ID=%s", *assumeRoleResponse.Credentials.AccessKeyId),
Sprintf("AWS_SECRET_ACCESS_KEY=%s", *assumeRoleResponse.Credentials.SecretAcci

Sprintf("AWS_SESSION TOKEN=%s", *assumeRoleResponse.Credentials.SessionToken))

- = command.Run(); err != nil {

ithField{"command", command.Args).
ithError{err).
italln("Failed to run command")

MICROSERVICE
ARCHITECTURE

Define service boundaries —it’s better to go too big
than too small

Strong contract testing is a must

Lines of Code DO NOT MATTER

Loosely couple with pub/sub and replicated data
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SIGNS YOU GOT YOUR BOUNDARIES
WRONG

* Your service has a runtime dependency on another service

* Your service has a deployment-time dependency on another service

* You cannot contract test your service in isolation

* If your service goes down, another service will fail

* Adding or fixing existing functionality requires modifying multiple repos

» |If your service reads another services data store
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Don’t daisy-chain or aggregate requests whenever it can be avoided
Every hop in the network is a chance to fail

If any request in a daisy-chain or aggregation fails, it’s a failed request
Adopt an eventually consistent model
Data stream technologies, like Kafka, or Pub/Sub technologies, like AMQP, allow for easy decoupling of
services
If your service requires data from another service to work, it should have it’s own local copy
If you simply can’t duplicate your data, or avoid a runtime dependency, then return what data you can, and

have your client retrieve the rest of the data
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MICROSERVICES
BULLET

The Problems

Duplicate code
* Boilerplate code
* Infrastructure as Code

*  Deployment pipelines

Inconsistencies in implementation

e Large maintenance overhead

Shared bugs

- NOT A SILVER

The Solutions
e Shared libraries
* Generate new services from templates
* Remote templates for infrastructure as
code
* Centralised Ownership

e Automated CI/CD
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Gateway responses
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OBSERVABILITY

*  Monitor everything

* Expect to spend 10-20% of your operating budget on
monitoring

* Differentiate between what should be real time, and

what can be delayed
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DISTRIBUTED TRACING

* Improves observability

* Easily find bottlenecks and broken services
'
7 * Aservice map can be a good indicator of
N\ accidental coupling

it
©
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COST
— ' s L)
= 'y s
DATABASES DEVELOPER LARGE TRAFFIC OVER-PROVISIONED

EXPERIMENTS SPIKES SERVERS
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