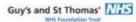
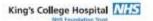
An Academic Health Sciences Centre for London

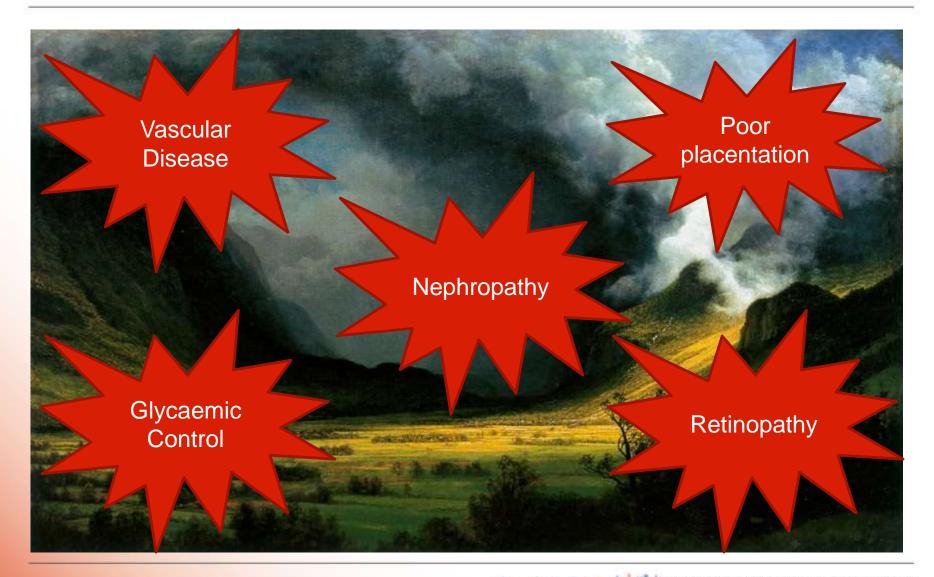
Pioneering better health for all

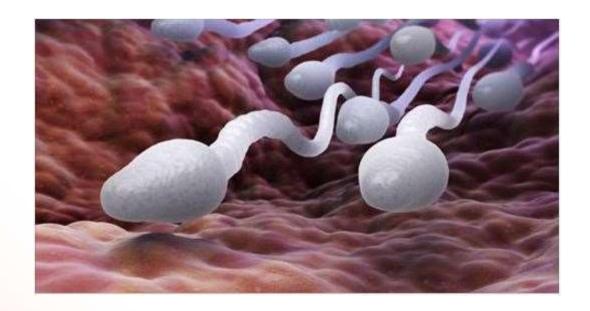

PREGNANCY: THE KIDNEY MARATHON A training guide for women with diabetes


Katherine Clark

Dr Kate Bramham

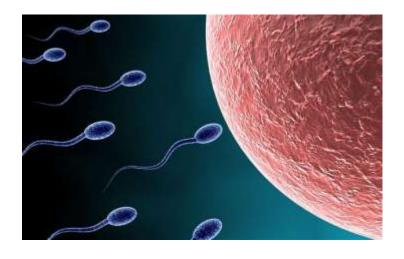
Preparation for the marathon


Running the Marathon

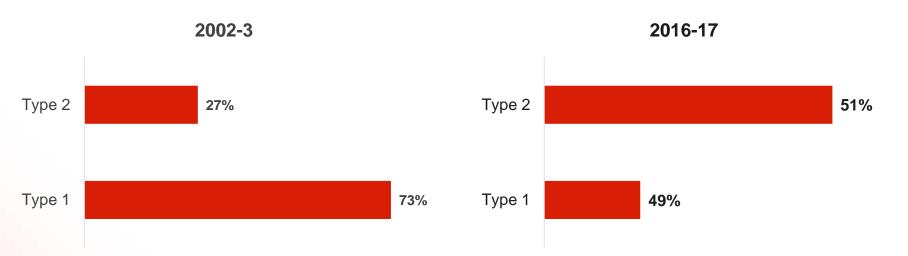

Finishing the marathon

Diabetic nephropathy and pregnancy – the perfect storm

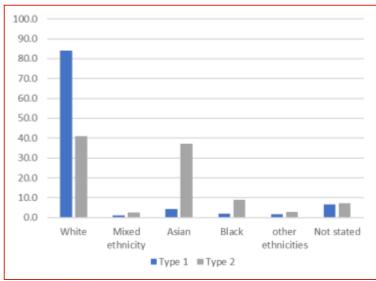
Getting pregnant

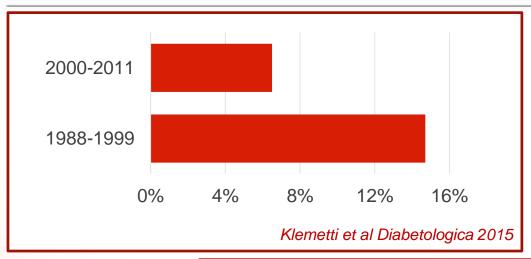

Diabetes often has no effect on fertility

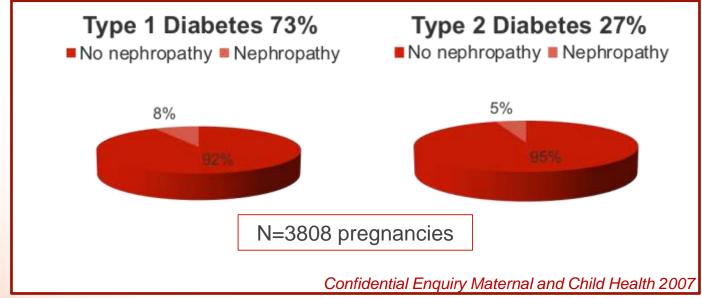
Type 1 diabetes


- No reduction in fertility
- Increased menstrual irregularity
- Delayed menarche
- Premature menopause

Type 2 diabetes


Association with polycystic ovaries


The proportion of type 2 diabetes is increasing in pregnancy



	Type 1 Diabetes	Type 2 Diabetes
Median age (years)	30.0	34.0
Median duration of diabetes (years)	13.0	3.0
Median BMI (kg/m²)	26.0	32.5

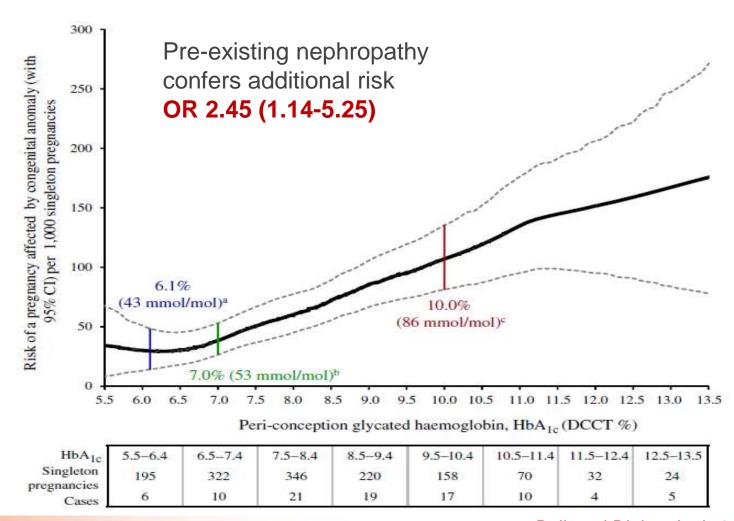
Incidence of nephropathy in pregnant women with pre-existing diabetes is falling

Pregnancy outcome is optimised pre-conception

Pre-conception counselling is recommended for ALL women with type 1 and type 2 diabetes

	Pre-existing diabetes	General maternity population
Planned Pregnancy	158/384 (41%)	58%
Use of contraception in 12mths before pregnancy	107/392 (27%)	
Pre-pregnancy folic acid	102/380 (27%)	<10-50%
Smoking	107/386 (28%)	35%

Confidential Enquiry into Maternal and Child Health 2007


Preparation for the marathon

Pre-pregnancy Counselling Guidelines

Bell et al Diabetologia 2012

Pre-pregnancy Counselling Guidelines

Avoid pregnancy if >86mmol/mol (10%)

Aim: HbA1c < 6.5%

Pre-pregnancy Counselling Guidelines

Avoid pregnancy if >86mmol/mol (10%)

Aim: HbA1c < 6.5%

Max RAAS blockade

Treat hypertension

Folic Acid

ACE Inhibitors / ARBs should not be used in pregnancy

Ramipril, Lisinopril, Fosinopril, Enalapril, Quinapril, Perindopril, Trandolapril, Benazepri

Candesartan, Irbesartan, Olmesartan, Losartan, Diovan, Valsartan, Telmisartan, Eprosartan

'Avoid teratogenic medications in sexually active women of child-bearing potential'

National Institute for Health and Clinical Excellence

'Angiotensin-converting enzyme inhibitors and angiotensin-II receptor antagonists should be discontinued before conception or as soon as pregnancy is confirmed.'

'Women with diabetic nephropathy continue angiotensin converting enzyme inhibitors until conception, with regular pregnancy testing during attempts to conceive'

First trimester ACEI exposure is considered teratogenic BUT...

Maternal exposure to angiotensin converting enzyme inhibitors in the first trimester and risk of malformations in offspring: a retrospective cohort study

1995 – 2008 Northern California

⊚ 08 OPEN ACCESS

De-Kun Li principal investigator¹, Chunmei Yang program analyst¹, Susan Andrade research associate professor², Venessa Tavares program analyst¹, Jeannette R Ferber program analyst¹

Risk of congenital heart defects:

ACEi v Controls

Other anti-HT v Controls

3.9% v 1.6%

2.4% v 1.6%

OR 1.54 (95% CI 0.90 to 2.62). **NS**

OR 1.52 (95% CI 1.04 to 2.21). **P<0.05**

Hypertension is associated with risk of congenital abnormalities

NOT ACEI

First trimester ACEI exposure is considered teratogenic BUT...

1,333,624 pregnancies 4,107 (0.31%) exposed to ACE inhibitors

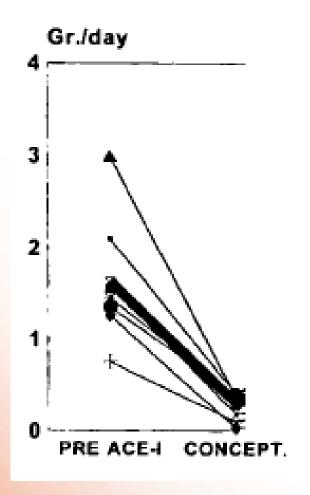
Congenital Malformations	Full Cohort			
	Risk		RR (95% CI)	
	Exposed (n=4,107)	Unexposed (n=1,329,517)	Unadjusted	
Overall	244 (5.94)	43,323 (3.26)	1.82 (1.61–2.06)	
Cardiovascular	139 (3.38)	15,272 (1.15)	2.95 (2.50-3.47)	
CNS	11 (0.27)	2,433 (0.18)	1.46 (0.81–2.64)	

RR, relative risk; CI, confidence interval; CNS, central nervous system.

Data are n (%) unless otherwise specified.

* Cell size less than 11, which cannot be disclosed in accordance with the data use agreement.

OBSTETRICS & GYNECOLOGY


Bateman Obs Gyn 2017

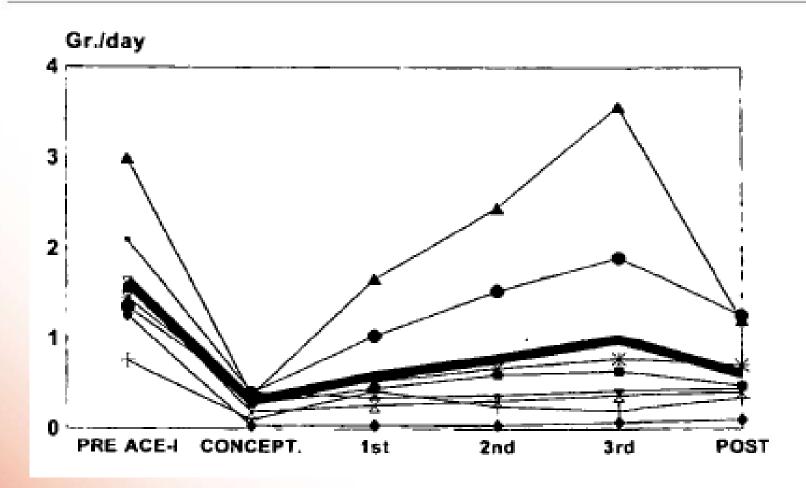
... the increased risk appears to be attributable to the underlying condition NOT exposure

Hypertension-Restricted Cohort					
	Risk	8	RR (95%	CI)	
Exposed (n=2,631)	Unexposed (n=15,884)	Unadjusted	Diabetes-Adjusted	Propensity Score-Adjusted	
142 (5.40)	634 (3.99)	1.35 (1.13–1.61)	0.97 (0.79–1.19)	0.89 (0.75–1.06)	
77 (2.93)	260 (1.64)	1.79 (1.39-2.30)	1.08 (0.81–1.44)	0.95 (0.75-1.21)	
*	45 (0.28)	1.07 (0.51-2.27)	0.68 (0.30-1.54)	OBSTETRI0.54 (0.26-1.11) OGY	

Continuing RAAS blockade pre-conception in women with diabetic nephropathy

8 women (Cr 0.8±0.05mg/dl)

>6 months until **proteinuria <500mg**

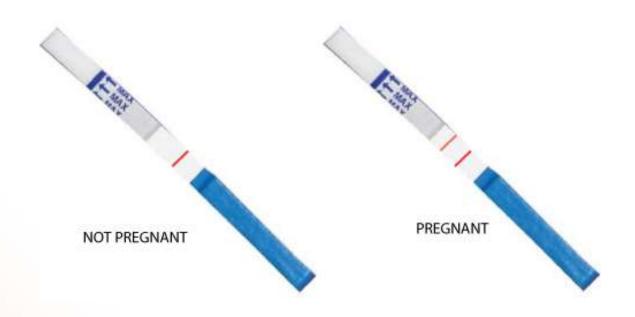

Intensive RAAS blockade (Captopril – 37.5-75mg daily)

- Pre-ACEI Proteinuria 1633±66mg/24hrs
- Post-ACEI Proteinuria 273±146mg/24hrs

Improved glycaemic control pre-pregnancy

Hod et al NDT 1995

Continuing RAAS blockade pre-conception in women with diabetic nephropathy


Only 2 women had proteinuria >1000mg during pregnancy (1903mg / 3578mg/24hr)

Hod et al NDT 1995

Does pre-pregnacy RAAS blockade improve outcomes?

	Ekbom <i>et al.</i> , 2001 (25)	Nielsen et al., 2006 (54)	Nielsen et al., 2009 (2
Antihypertensive Therapy Strategy	Pre-Eclampsia Diastolic BP >95 mmHg	BP >140/90 mmHg UAE >2 g/24 h ACE Inhibitor before Pregnancy	BP >135/85 mmHg UAE ≥300/24 h ACE Inhibitor before Pregnancy
Number	26	20	10
Duration of diabetes (yr) HbA1c at inclusion (%)	8.1±0.9	18±8 6.8±0.5	7.3±1.5
Week of onset of antihypertensive therapy Patients on antihypertensive therapy during pregnancy	29 (20–34) 9 (35)	13 (Before-34) 10 (50)	Before (Before-14) 5 (50)
ACE inhibitor before pregnancy	5 (19)	9 (45)	4 (40)
Systolic BP at inclusion (mmHg)	121±13	121±14	117±14
Diastolic BP at inclusion (mmHg)	71 ±8	73±8	74±8
UAE (mg/24 h)	69 (16–278)	74 (30–287)	91 (30–198)
Pre-eclampsia	11 (42)	4 (20)	0
Preterm delivery before 34 wk	6 (23)	0	0
Preterm delivery before 37 wk	16 (62)	8 (40)	2 (20)
Birth weight (g)	3124±767	3279±663	3471±670
Perinatal mortality	1 (4)	0	0
Major congenital malformations	1(4)	0	0

We definitely need to ensure early detection of pregnancy

Recommend continue Angiogensin Converting Enzyme Inhibitors until conception

Test frequently for pregnancy

Pre-pregnancy Counselling Guidelines

Avoid pregnancy if >86mmol/mol (10%)

Aim: HbA1c < 6.5%

Max RAAS blockade

Treat hypertension

Folic Acid

Regular pregnancy testing

If BMI >27kg/m²:

Dietary review Weight loss

Pre-pregnancy Counselling Guidelines

Avoid pregnancy if >86mmol/mol (10%)

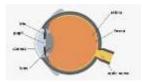
Aim: HbA1c < 6.5%

Max RAAS blockade

Treat hypertension

Folic Acid

Regular pregnancy testing



If BMI >27kg/m²:

Dietary review Weight loss

Things to do when you see a positive pregnancy test

Involve the MDT

Retinal assessment if non within 3 months

Confirmation of viability and gestational age <9weeks

HbA1c to assess risk

Review medications

Advice regarding nausea


and vomiting and glucose

control

Start aspirin 75mg OD

Start vitamin D

Over the start line: What's needed now?!

Antenatal care

Multi-disciplinary Care: Midwives Obstetricians Diabetologist Nephrologist Nurses Dieticians

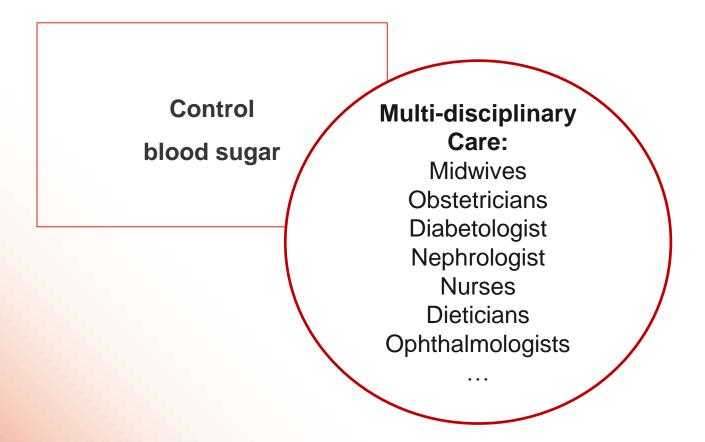
Ophthalmologists ...

Continuity of appropriate carers must be a primary aim

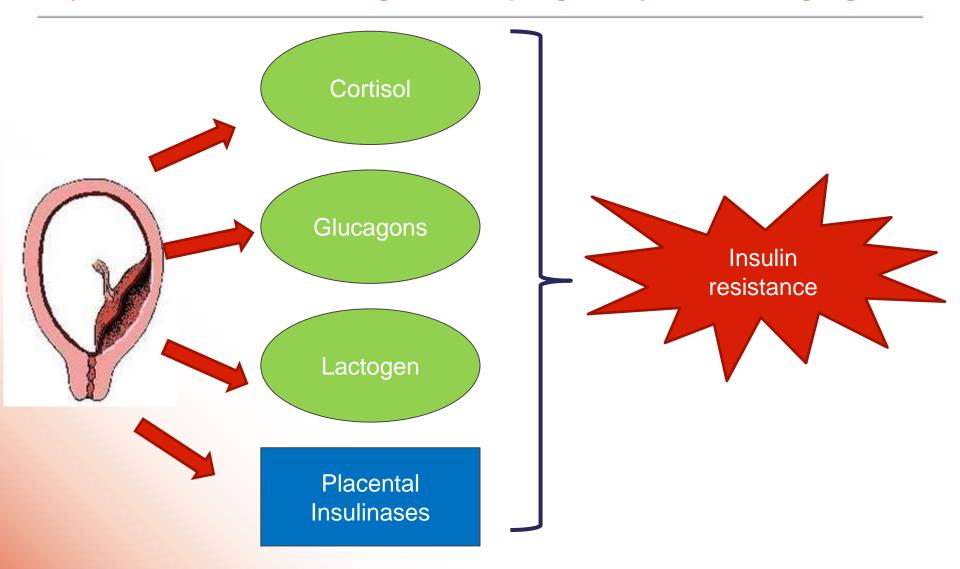
Every pregnant women needs a midwife...midwives should be the 'golden thread for every woman through her pregnancy, birth and beyond.

@BirteLam #FutureMidwifery #Betterbirths #teamCNO

"Continuity of carer is even more important particularly for women with pre-existing health... conditions who are being cared for by multidisciplinary team maternity professionals."


RCM (2019)

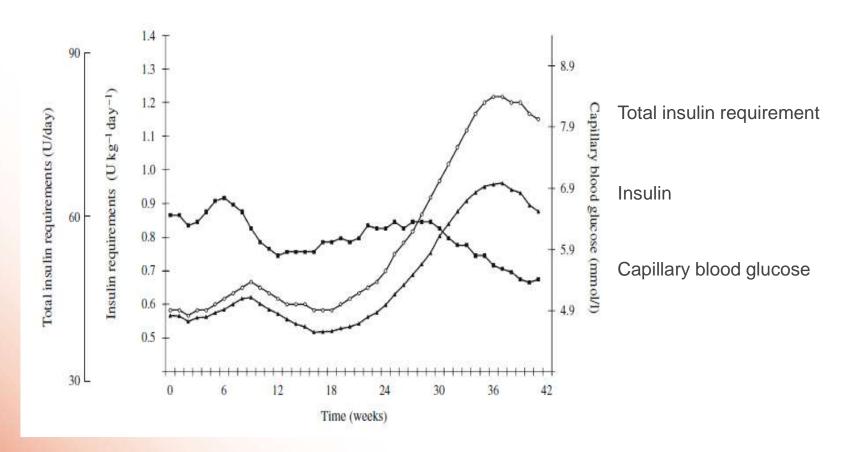
'The right people with the right skills at the right time'


Sandall (2011)

'Intuitive knowledge'

Berg, (2005)

Glycaemic control during normal pregnancy is challenging



Safety of Medications in Pregnancy

Drug	FDA	Human Teratogenicit y	Fetal/neonatal effects	Comments
Isophane (NHP) insulin	В	*	×	First choice long acting insulin
Rapid-acting insulin analogues e.g aspart, lispro	В	×	×	May be preferable to start pre- pregnancy
Longer-acting insulin analogues e.g. detemir, glargine	С	×	×	Increasing evidence to suggest safety
Metformin	В	×	×	GFM or Type 2 only
Glibenclamide	С	*	×	Doses <20mg/day less likely to cause neonatal hypoglycamia
Thiazolidinediones e.g. Rosiglitazline	С	None reported but	Unknown	Stop at conception

Insulin requirements in pregnancy will fluctuate and are unpredictable

63 women with type 1 diabetes

Garcia-Paterson et al Diabetologica 2012

Frequent glucose monitoring is recommended for women with type 1 and type 2

Time	NICE 2015 (mmol/l)	ADA 2015 (mmol/l)
Fasting	<5.3	3.3-5.4
1 hour post meal	<7.8	5.4-7.1
2 hours post meal	<6.4	<6.4

If on insulin or glibenclamide – advise to maintain plasma glucose >4mmol/l

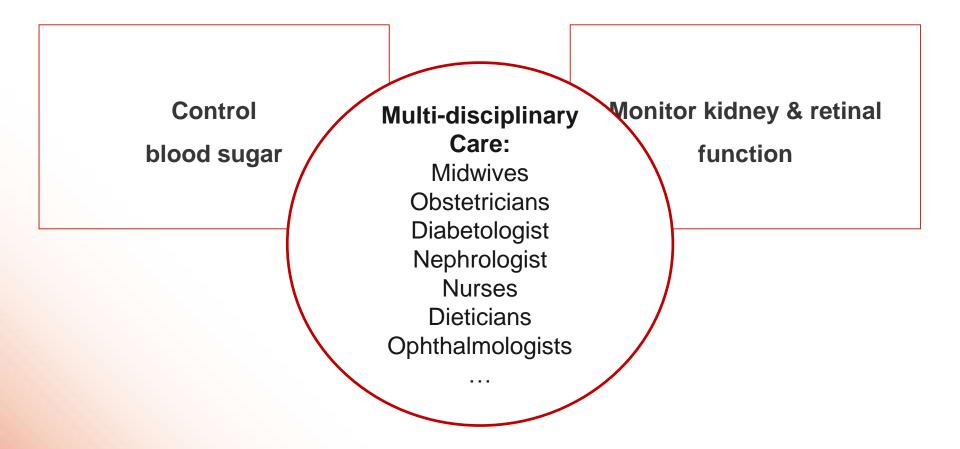
Increase risk of hypoglycamia and impaired awareness in first trimester.

HbA1C is not accurate during pregnancy

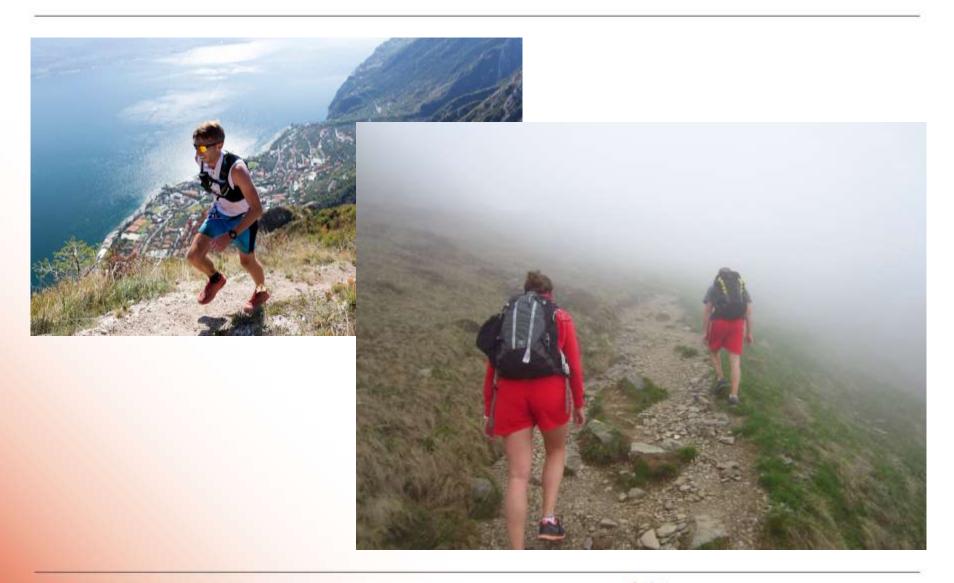
- •Increased red cell turnover
- •Changes in glycaemic range

Trimester	Healthy Pregnancy Range
First	<5.3%
Second	<7.8%
Third	<5.6%

 DO not use HbA1C in second or third trimester to assess control • Target <6.0%


Ketonaemia testing is recommended more readily

	Time Interval	Incidence, % (No.)	Perinatal Mortality Rate, % (No.)
Lufkin et al. (1)	1950-1979	7.9 (18/228)	27.8 (5/18)
Kilvert et al. (2)	1971-1990	1.7 (11/635)	22
Montoro et al. (3)	1972-1987	3.9 (22/560)	35 (7/20)
Chauhan et al. (4)	1976-1981	22	35
	1986-1991	3	1.0
Cullen et al. (5)	1985-1995	2 (11/520)	9 (1/11)


Diabetic Ketoacidosis is associated with increased perinatal mortality

Women with type 1 diabetes should be advised to test for ketonaemia if they become hyperglycaemic or unwell

OVER TO DR BRAMHAM!!!!

Diabetic retinopathy – Progression in pregnancy

Table 3—Comparison of incidences of short-term progression of any retinopathy between pregnant and nonpregnant women*

	Not	t pregnant	P	regnant			
Group	Total	With worse retinopathy	Total	With worse retinopathy	OR†	95% CI	P
Intensive]	
Unadjusted	2,950	693 (23)	124	39 (31)	1.62	1.01 - 2.59	< 0.05
Adjusted‡		24-2	-	5 	1.63	1.01 - 2.64	< 0.05
Conventional					-250,4500	CANTON CONTROL	
Unadjusted	5,605	1,742 (31)	73	37 (51)	2.54	1.59-4.03	< 0.001
Adjusted	18.5		-	8	2.48	1.56-3.94	< 0.001

Data are n or n (%), unless otherwise indicated.*Progression is relative to the pregnancy-free ETDRS level 6 and 12 months prior; \dagger OR obtained from a GEE logistic regression model; \dagger model adjusted for the prepregnancy retinopathy status, the recent change in HbA_{1r} from the prior visit, and time of visit during study.

DCCT Study Diabetes Care 2000

Assess at

- a) First visit (if not done within last 3 months)
- b) At 28 weeks
- c) If present at first antenatal visit additional assessment at 16-20 weeks
- Retinopathy is not a contraindication to a vaginal delivery
- Lazer treatment is safe in pregnancy

Risk factors for retinopathy progression

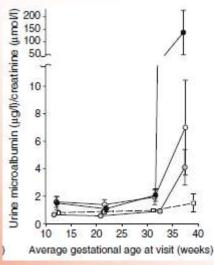
- Established disease
- Anaemia
- Diastolic hypertension

Management of Proteinuria

Case 1
23 year old Type 1 Diabetes (HbA1C 9.8%)

Protein: Creatinine Ratio 1240mg/mmol at 20 weeks'

Thromboprophylaxis: recommended by NICE for proteinuria >5g/24 hours Should be considered in context of other risk factors

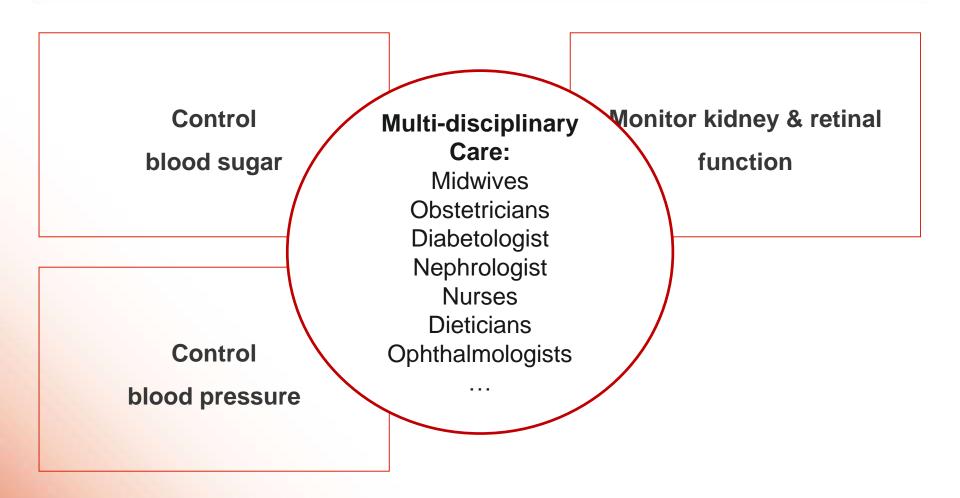

Frusemide 20mg od

Proteinuria

Progression of Proteinuria

- N=11 Cr range 1.8-2.5mg/dl (159-221µmol/l)
 - Early pregnancy 18% nephrotic range (Median 2.4g/24hrs (0.2-8.0)
 - Late pregnancy 72% nephrotic range (Median 5.6g/24hrs (0.2-14.4)
- Worsening proteinuria in 82%

Purdy et al Diabetes Care 1996


Diabetic pre-eclampsia n= 26

Non diabetic pre-eclampsia n= 3

Diabetic normotensive n= 95

Non diabetic normotensive n= 21

Yu et al Diabetologica 2009

Blood pressure targets

The NEW ENGLAND JOURNAL of MEDICINE

EXAMBLE 9000 (NA SA 2

JANUARY 20, 2015

1001, 272, 000 S

Less-Tight versus Tight Control of Hypertension in Pregnancy

Laura A. Magee, M.D., Peter von Dadelszen, M.B., Ch.B., D.Phill, Evelyne Rey, M.D., Susan Ross, M.B.A., Ph.D., Elizabeth Asztalos, M.D., Kellie E. Murphy, M.D., Jennifer Menzies, M.Sc., Johanna Sanchez, M.I.P.H., Joel Singer, Ph.D., Amiram Gafni, D.Sc., Andrée Gruslin, M.D., Michael Helewa, M.D., Eleen Hutton, Ph.D., Shoo K. Lee, M.D., Ph.D., Terry Lee, Ph.D., Alexander G. Logan, M.D., Wessel Ganzerboott, M.D., Ph.D., Ross Welch, M.B., B.S., D.A., M.D., Jim G. Thornton, M.B., Ch.B., M.D., and Jean-Marie Moutquin, M.D.

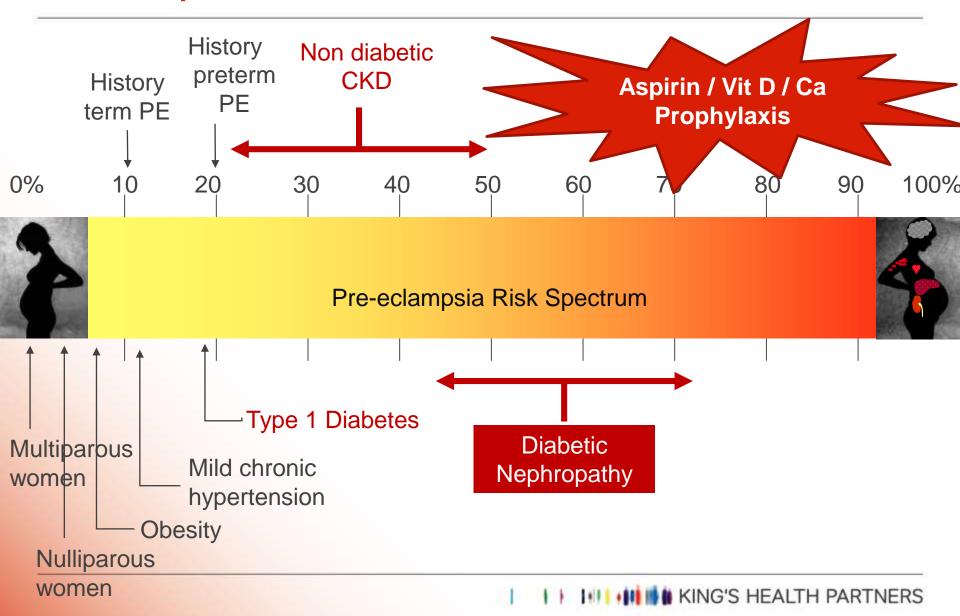
Tight blood pressure control (Diastolic <85 mmHg) better maternal outcomes and no adverse impact on babies

Magee NEJM 2015

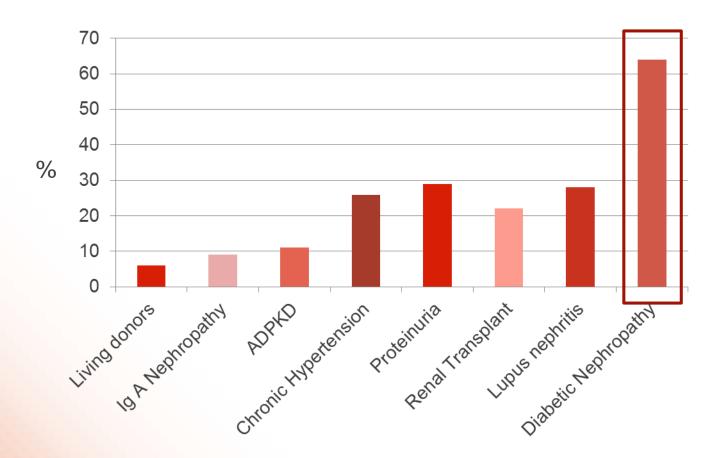
Target blood pressure for women with diabetes

Target Blood Pressure - Controversial

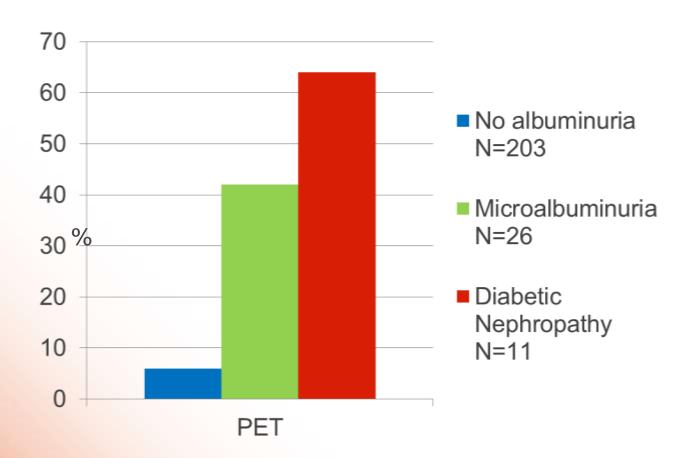
ADA Guidelines


- Systolic 110-129mmHg
- Diastolic 65-79mmHg

Canadian Guidelines


- Systolic 130-139mmHg
- Diastolic 80-89mmHg²

Pre-eclampsia Risk



Rate of pre-eclampsia according to renal aetiology

Garg et al NEJM 2015; Liu et al AJKD 2014, ; Chapman et al J Am Soc Nephrol 1984; Bramham et al BMJ 2014, Stetler AJOG 1992, Bramham et al CJASN 2013, Ekbom et al Diabetes Care 2001; Bramham et al J Rheum 2011

Pregnancy Outcomes – Diabetic Nephropathy

Danish Prospective Cohort Study

Ekbom et al Diabetes Care 2001

Pregnancy outcomes: Normoalbuminuria v microalbuminura

Table 1—Maternal and fetal characteristics in 846 normoalbuminuric and microalbuminuric women with type 1 diabetes

	Normoalbuminuria	Microalbuminuria	P
n	762	84	
Age (years)	28 (25-32)	27 (24-31)	0.34
BMI (kg/m²)	23 (21-25)	24 (22-26)	0.002
Duration of diabetes (years)	10 (4-17)	15 (10-20)	< 0.001
Nulliparity	452 (59)	57 (68)	0.12
Prepregnancy insulin dose (IU/day)	44 (32-54)	47 (40-58)	< 0.001
Blood pressure ≥140/90			
mmHg at first visit	5(1)	3 (4)	< 0.001
Proliferative retinopathy	25 (3)	9(11)	< 0.001
First-trimester A1C (%)	7.1 (6.4-8.0)	7.6 (6.8-8.5)	0.007
Third-trimester AIC (%)	6.6 (6.0-7.3)	6.8 (6.2-7.5)	0.14
Hypertension during second			
trimester*	11 (1.5)	11 (13)	< 0.001
Preeclampsia	92 (12)	34 (41)	< 0.001
Gestational age (days)	260 (252-266)	260 (250-266)	0.2
Gestational age <34 weeks	45 (6)	11(13)	0.02
Gestational age <37 weeks	284 (37)	30 (36)	0.78
Birth weight (g)	3,650 (3,162-4,060)	3,335 (2,900-3,650)	< 0.001
Large-for-gestational-age infant	483 (63)	42 (50)	0.02

Danish population study 1993-1999

Independent predictors of pre-eclampsia

- Microalbuminuria OR 4.0 (95% CI 2.2-72)
- Nulliparity OR 3.1 (95% CI 1.9-5.3)
- Third trimester HbA1C increase by 1% OR 1.3 (95% CI 1.1-1.5)

Data are medians (interquartile range) or π (%). *Blood pressure ≥140/90 mmHg.

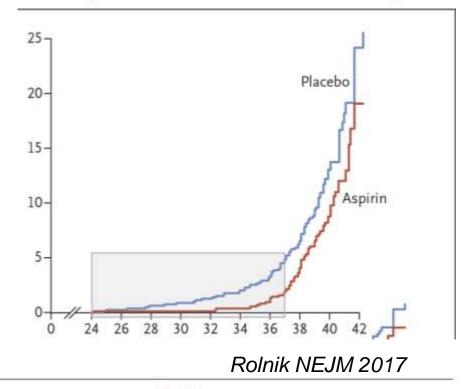
Excluded

- Urine albumin >300mg/24 hrs
- Women taking antihypertensives

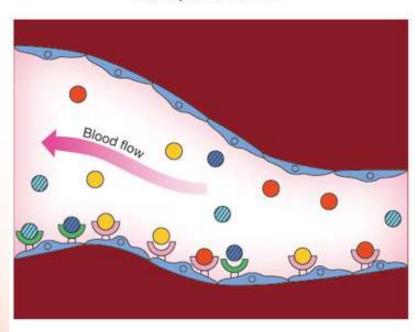
Jensen et al Diabetes Care 2012

Aspirin for Pre-eclampsia

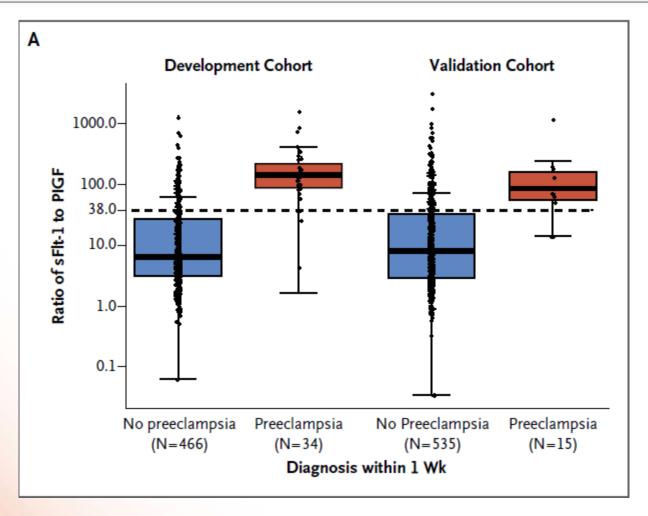
Daily aspirin dose could lower preeclampsia risk in pregnant women


Low dose taken by women at risk of pre-eclampsia throughout pregnancy more than halves chances of premature birth, finds study

 Used screening test algorithm that combines 17 variables to stratify risk then randomised to 150 mg aspirin or placebo The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia


Pre-eclampsia – Novel biomarkers

Healthy Blood Vessel

PROGNOSIS – Prospective International Cohort Study

Zeisler NEJM 2016

PROGNOSIS – Prospective International Cohort Study

Preeclampsia	Development Cohort	Validation Cohort
	percent (95% CI)
Within 1 wk		
Negative predictive value: rule out	98.9 (97.3–99.7)	99.3 (97.9–99.9)
Sensitivity	88.2 (72.5–96.7)	80.0 (51.9–95.7)
Specificity	80.0 (76.1-83.6)	78.3 (74.6–81.7)
Within 4 wk		
Positive predictive value: rule in	40.7 (31.9-49.9)	36.7 (28.4–45.7)
Sensitivity	74.6 (62.5–84.5)	66.2 (54.0–77.0)
Specificity	83.1 (79.3-86.5)	83.1 (79.4–86.3)

Placental Growth Factor in Clinical Practice

Hypertension in Pregnancy NICE Guidelines

with additional diagnostic test for the PARROT trial

Mild hypertension BP up to 149/99 mmHg

- Do not admit to hospital.
- BP up to 149/99 mmHg
- Do not treat hypertension.
- Measure BP no more than x1/wk
- Test for proteinuria at each visit
- Carry out routine antenatal blood tests.
- If presenting before 32/40, or at high risk of pre-eclampsia, test for proteinuria and measure BP x2/ wk.

Moderate hypertension BP 150/100–159/109 mmHg

Do not admit to hospital.

- Treat hypertension to keep BP <150/80–100 mmHg.
- Measure BP at least x2/ wk.
- Test for proteinuria at each visit
- Test kidney function, electrolytes, FBC, transaminases, bilirubin.
- No further blood tests if no subsequent proteinuria.
- Arrange fetal USS

Severe hypertension BP ≥ 160/110 mmHg

- Admit to hospital until BP ≤159/109 mmHg and treat hypertension to keep BP < 150/80–100 mmHg.
- •Measure BP at least x4/ day
- •Test for proteinuria daily
- Test kidney function, electrolytes, FBC, transaminases, bilirubin at presentation & then weekly.
- Arrange fetal USS

Continue care as in guidelines pathway; integrate additional information from PIGF test as shown below

PIGF >100 NORMAL

CONTINUE WITH
USUAL MANAGEMENT

PIGF 12-100 LOW

CONSIDER INCREASED SURVEILLANCE

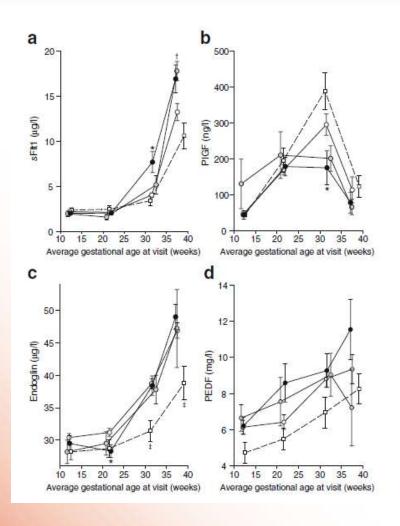
PIGF <12 VERY LOW

ASSESS AS PRE-ECLAMPSIA

Algorithm version 3.0 Jan 2016

Placental Growth Factor in Clinical Practice

Stepped-wedge cluster randomised controlled trial
11 UK maternity units (3000-9000 deliveries per annum)
Women presenting to maternity services with suspected pre-eclampsia


Primary Outcome	Revealed Group	Concealed Group	Effect size
Number of women diagnosed with pre-eclampsia n (%)	N= 205 (36.8%)	N= 155 (34.8%)	
Time to diagnosis of pre-eclampsia (for those diagnosed) (days) Median (IQR)	1.9 (0.5, 9.2)	4.1 (0.8, 14.7)	0.39* (0.17-0.91)

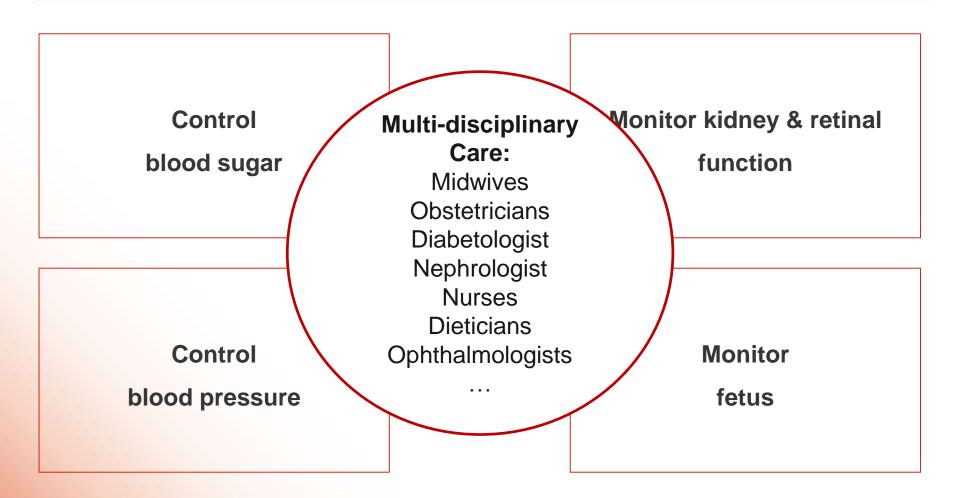
*adjusted ratio of means

Maternal Adverse Outcome	Revealed Group N= 573	Concealed Group N= 446	Effect size
Maternal adverse outcomes n of women (%) *	22 (3.8%)	24 (5.4%)	aOR 0.32 (0.11-0.96)

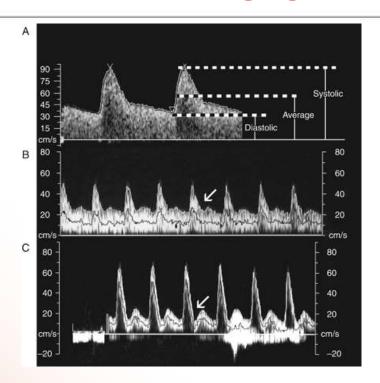
^{*}As defined by the fullPIERS consensus

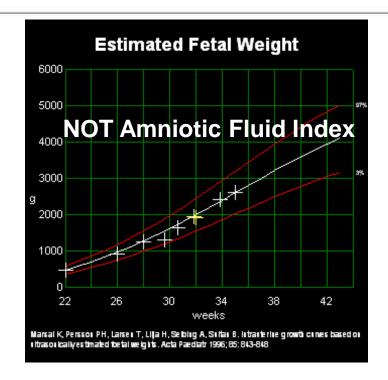
Diagnosis of Pre-eclampsia – Anti angiogenic factors

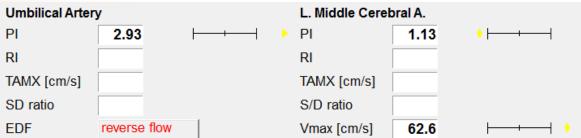
Diabetic pre-eclampsia n= 26 Non diabetic pre-eclampsia n= 3 Diabetic normotensive n= 95


Non diabetic normotensive n=21

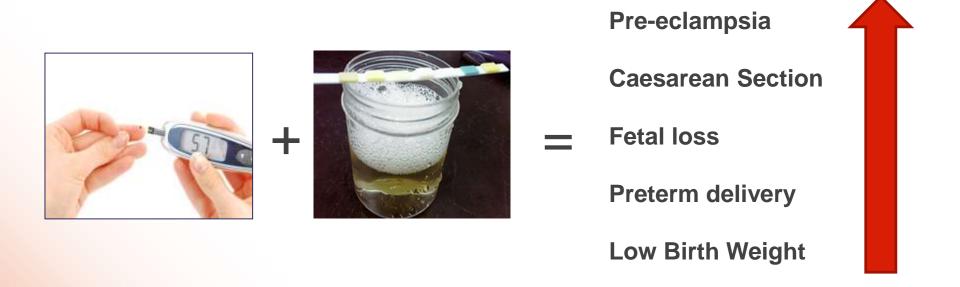
Elevated sFlt-1, Low PLGF and elevated sFLt-1:PIGF precede pre-eclampsia in women with type 1 diabetes


BUT endoglin is elevated in women with type 1 diabetes regardless of onset of preeclampsia


? Contributes to increase risk


Yu et al Diabetologica 2009

Placental / Fetal imaging



Reliable in CKD, Piccoli et al NDT 2013, Bramham et al Kidney Int 2016

Finishing the marathon

Diabetic Nephropathy Pregnancy Outcomes - Summary

Intrapartum care

- Diabetes is not a contraindication to antenatal steroids for fetal lung maturity
 will need increased insulin and close monitoring
- Not for betamimetic tocolytics
- Anaesthetic assessment in third trimester if obese or autonomic neuropathy
- Aim for plasma glucose 4-7mmol/l during labour
- Intravenous insulin and dextrose recommended after onset of established labour
- Offer delivery between 37⁺⁰ 38⁺⁶ weeks' if no complications
- Consider delivery before 37 weeks if maternal or fetal complications

Neonatal care

Hospital delivery recommended

Blood glucose monitoring 2-4 hours

Complications

- Polycythaemia
- Hyperbilirubinaemia
- Hypocalcaemia
- Hypomagnesiaemia

Vigilance for undiagnosed congenital heart disease

Breastfeeding Compatible Medication

- Metformin
- Glibenclamide
- Insulins

ENALAPRIL Redman Eur J Clin Pharm 1990

BUT Reduced insulin requirements postpartum

Neonatal Outcomes

Neonatal outcomes in women with pre-existing diabetes

1548 pregnancies with pre-existing diabetes compared 393, 844 without 1996-2008

Table 1 RR of a fetal or infant death (in normally formed singleton offspring) associated with maternal pre-existing diabetes in the North of England during 1996–2008

Outcome	Without pre-exis	sting diabetes	With pre-exis	ting diabetes	RR (95% CI)	p value	
	Cases $(n = 395,844^{a}/393,262^{b})$	Prevalence (95% CI) per 1,000 deliveries c/live births d	Cases (n=1,548 ^a / 1,502 ^b)	Prevalence (95% CI) per 1,000 deliveries ^c /live births ^d		<0.0001 <0.0001 0.25 ^g <0.0001 <0.0001 0.042 ^g 0.046	
Fetal or infant death	3,988	10.1 (9.8, 10.4)	56	36.2 (27.4, 46.7)	3.59 (2.77, 4.65)	< 0.0001	
Fetal death ^e	2,582	6.5 (6.3, 6.8)	46	29.7 (21.8, 39.4)	4.56 (3.42, 6.07)	< 0.0001	
Late miscarriage ^f	796	2.0 (1.9, 2.2)	5	3.2 (1.0, 7.5)	1.61 (0.67, 3.86)	0.25g	
Stillbirth ^h	1,786	4.5 (4.3, 4.7)	41	26.5 (19.1, 35.8)	5.87 (4.32, 7.97)	< 0.0001	
Antepartum stillbirthi	1,593	4.0 (3.8, 4.2)	38	24.5 (17.4, 33.5)	6.10 (4.44, 8.38)	< 0.0001	
Intrapartum stillbirth ^j	193	0.5 (0.4, 0.6)	3	1.9 (0.4, 5.7)	3.97 (1.27, 12.41)	0.042^{g}	
Infant deathk	1,406	3.6 (3.4, 3.8)	10	6.7 (3.2, 12.2)	1.86 (1.00, 3.46)	0.046	
Neonatal death ¹	904	2.3 (2.1, 2.5)	6	4.0 (1.5, 8.7)	1.74 (0.78, 3.87)	0.17^{8}	
Postneonatal death ^m	502	1.3 (1.2, 1.4)	4	2.7 (0.7, 6.8)	2.09 (0.78, 5.57)	0.13 ^g	

Tennant et al Diabetologica 2014

Improvement in outcomes from 2002 to 2015

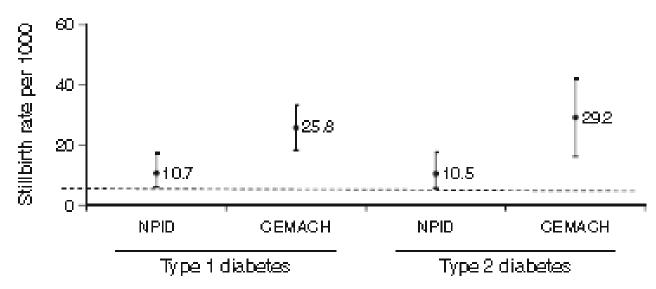


Fig. 3 Stillbirth rate during the NPID audit 2015 compared with CEMACH 2002/2003 for women with type 1 and type 2 diabetes. Data presented are stillbirth rates per 1000 births with 95% CI. Dashed line, stillbirth rate for the general maternity population for 2015 (based on data from the Office for National Statistics [12])

Glycaemic Control and Outcomes

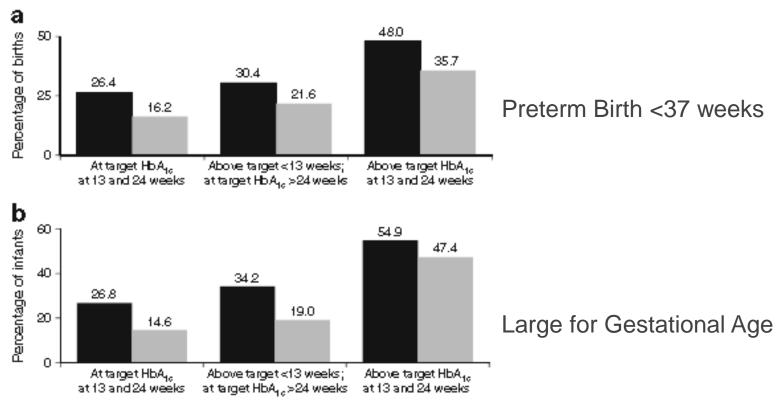
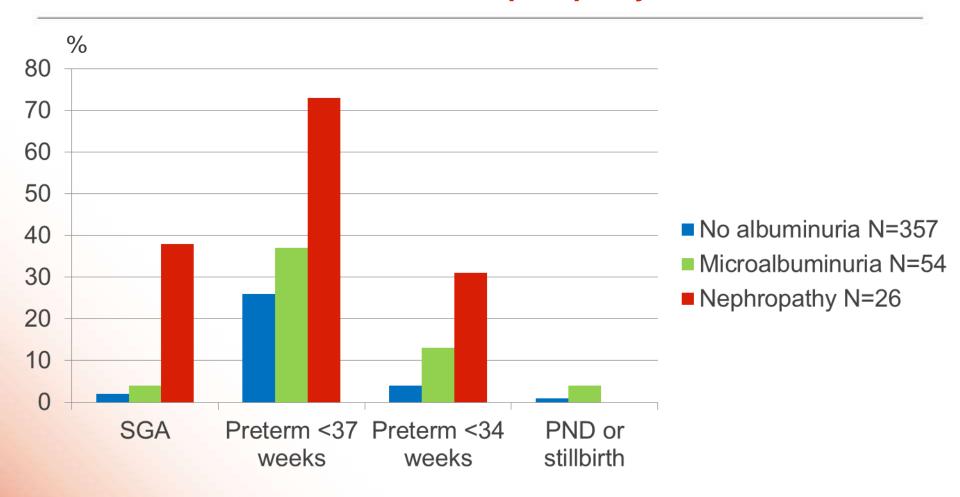


Fig. 2 Relationships for achievement of glycaemic control targets (HbA_{1c} < 6.5% [48 mmol/mol]) with (a) preterm delivery before 37 weeks' gestation and (b) rates of LGA in infants (customised birthweight >90th percentile). Black bars, type 1 diabetes; grey bars, type 2 diabetes

Pregnancy outcomes – Type 1 v Type 2 diabetes

	Type 2 diabetes	Type 1 diabetes	P
n	61	240	
Complications in pregnancy			
Pregnancy-induced hypertension	6 (10)	12 (5)	0.22
Preeclampsia	4 (7)	30 (13)	0.26
Caesarean delivery	22 (36)	123 (51)	0.04
Perinatal outcome			
Congenital malformations	4 (6.6)	7 (2.9)	0.24
Perinatal mortality	4 (6.7)	4(1.7)	0.05
Gestational age (weeks)*	38.0 (37-39)	37.3 (36-38)	0.03
Birth <34 weeks' gestation*	8 (14)	17 (7)	0.19
Birth <37 weeks' gestation*	18 (31)	87 (38)	0.29
Birth weight (g)*	3,600 (3,095-3,990)	3,595 (3,064-3,925)	0.79
Large for gestational age*	33 (56)	117 (51)	0.54
Small for gestational age*	1(2)	9 (4)	0.35
Birth weight >4,500 g*	5 (8)	11 (5)	0.27
Neonatal jaundice*	13 (22)	40 (18)	0.33
Respiratory difficulties*	12 (20)	52 (23)	0.79


Data are medians (interquartile range) or n (%). *The total of live-born singleton infants was 59 for type 2 diabetes and 228 for type 1 diabetes.

Clausen et al Diabetes Care 2005

Comparable pregnancy outcomes between women with nephropathy Type 1 v 2

Damm et al Diabetes Care 2014

Neonatal Outcomes – Diabetic Nephropathy

Piccoli et al Diabetes Studies Rev 2013

Combined data from Themeli et al 2012, Nielsen 2009, Ekbom 2001

Factors influencing pregnancy outcomes in women with diabetic nephropathy

Independent predictors of preterm delivery <37 weeks'

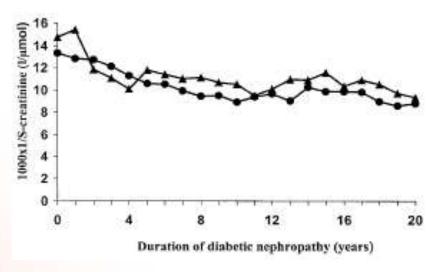
- First trimester blood pressure <130/80mmHg
- First trimester proteinuria >1g/24hrs or 2 or 3+ protein on urinalysis
- Last HbA1c before delivery

Klemmeti et al Diabetologica 2015

But – small cohort studies – possibly?

Pre-eclampsia

	Ekbom et al., 2001 (25)	Nielsen et al., 2006 (54)	Nielsen et al., 2009 (2
Antihypertensive Therapy Strategy	Pre-Eclampsia Diastolic BP >95 mmHg	BP >140/90 mmHg UAE >2 g/24 h ACE Inhibitor before Pregnancy	BP >135/85 mmHg UAE ≥300/24 h ACE Inhibitor before Pregnancy
Number	26	20	10
Duration of diabetes (yr)	19±5	18±8	15±10
HbA1c at inclusion (%)	8.1±0.9	6.8±0.5	7.3 ± 1.5
Week of onset of antihypertensive therapy	29 (20-34)	13 (Before-34)	Before (Before-14)
Patients on antihypertensive therapy during pregnancy	9 (35)	10 (50)	5 (50)
ACE inhibitor before pregnancy	5 (19)	9 (45)	4 (40)
Systolic BP at inclusion (mmHg)	121±13	121±14	117±14
Diastolic BP at inclusion (mmHg)	71 ±8	73±8	74±8
UAE (mg/24 h)	69 (16-278)	74 (30-287)	91 (30-198)


11 (42)

4(20)

Long term maternal outcomes

Pre-existing nephropathy Progression

Rossing et al Diabetologica 2002

No difference in rate of decline between women with and without pregnancies over 16 years

	Non-pregnant $(n = 67)$	Pregnant $(n=26)$	p
Duration of follow-up (years) ^a	16 (3-28)	16 (10-26)	NS
Systolic blood pressure (mmHg)	139 (14)	136 (13)	NS
Diastolic blood pressure (mmHg)	85 (7)	83 (7)	NS
Albuminuria (mg/24 h) ^b	882 (706-1100)	786 (474-1303)	NS
HbA _{1c} (%)	9.4 (1.1)	9.4 (1.2)	NS
Slope of 1/S-creatinine (1000 · l · μmol ⁻¹ · year ⁻¹) – During entire follow-up – Post partum	-0.41 (0.70)	-0.39 (0.40) -0.32 (0.52)	NS NS ^d
Decline in creatinine clearance (ml/min/year)	32 (5.1)	3.2 (3.4)	NS
Doubling of baseline creatinine ^c (%)	33 (22-44)	31 (13-49)	NS
Development of ESRD ^c (%)	24 (14-34)	23 (7-39)	NS

Renal Disease Progression: Postpartum – 3 months

Adaptation to pregnancy N=6 (5 women)

- Pre-pregnancy Cr Cl 80mls/min/1.73m² (Range 70-91)
- Postpartum Cr Cl 78mls/min/1.73m² (Range 70-92)

No adaptation to pregnancy N=8 (7 women)

- Pre-pregnancy Cr Cl 61mls/min/1.73m²
- (Range 37-73)
- Postpartum Cr Cl 39mls/min/1.73m² (Range 22-68) ~ 36% decline

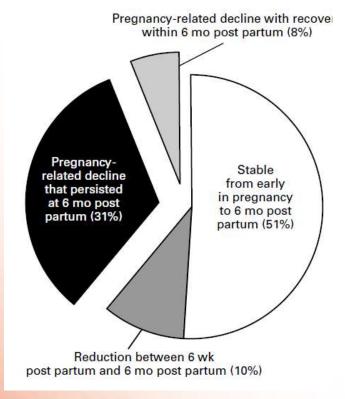
Risk factors for progression

- BP during pregnancy tended to be higher in non adapters
- BP significantly higher in week before delivery

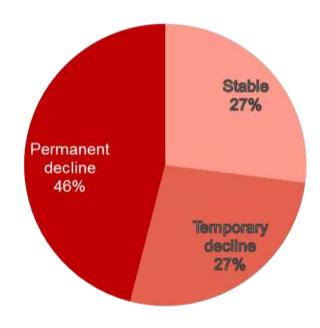
? Role for tight hypertensive control / ? Contribution from placental disease

7/11 (64%) progressed to End Stage in 6-57 months after delivery

Biesenback et al J of Nephrology 1999


Comparison of progression with other CKD

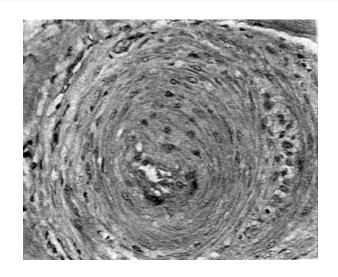
82 pregnancies in 62 women


Mean Cr 1.9±0.8mg/dl (168±71µmol/l)

11 pregnancies in 11 women

Cr range 1.8-2.5mg/dl (159-221µmol/l)

Jones and Hayslett NEJM 2006



Purdy et al Diabetes Care 1996

Maternal Morbidity and Mortality

Table 3. Causes of death in women with Type I diabetes and diabetic nephropathy

	Non-pregnant (n = 67)	Pregnant (n = 26)	p
Cardiovascular ESRD	7 (10%) 8 (12%)	4 (15%) 5 (19%)	
Accident	1(2%)	0 (0%)	
Total	23 (34 (23-45)%)a	9 (35 (17-53)%)*	NS

35% of the cohort had died during the 16 year follow-up period

Rossing et al Diabetologica 2002

Cardiovascular morbidity

•8/14 women with diabetic nephropathy had significant atherosclerotic disease (Bagg et al 2003)

Summary

- Multidisciplinary team work is essential
- Pre-pregnancy counselling
 - Aggressive treatment before conception
 - Avoidance of unplanned pregnancy
- Hypertensive control during pregnancy
- Glycaemic control during pregnancy

Thank you

How to optimise outcomes: Hypertension

Suboptimal blood pressure associated with preterm delivery and nephrotic range proteinuria

MAP <110mmHg

Table 2. Comparison of pregnancy and neonatal outcomes between groups

	Below Target (N = 22)	Above Target (N = 21)	P	Crude OR
Nephrotic range proteinuria, n (%)	5/15 (33.3)	13/18 (72.2)	.02	5.2 (1.25, 21.66)
Preeclampsia, n (%) Fetal demise, n (%)	6 (2/.3) 2 (9.1)	9 (42.9) 2 (9.5)	1.0	2.0 (0.52, 7.74) 1.05 (0.14, 8.07)
Delivery gestational age (wk)	35.1 ± 0.5	32.8 ± 0.9	.02	12.02 (1.54.109.61)
Delivery $<$ 32 weeks' gestation, n (%) Cesarean delivery, n (%)	1 (4.6) 14 (63.4)	8 (38.1) 16 (76.2)	.02	12.92 (1.54, 108.61) 1.83 (0.52, 6.45)
Birth weight (kg)	2.52 ± 0.15	1.88 ± 0.2	.01	100 1 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Birth weight percentile Small-for-gestational age, n (%)	40.8 (9.3–99.1) 2 (9.1)	20.9 (3.9–99.3) 6 (28.6)	.07 .1	4.0 (0.73, 21.83)

But above target group had:

- Higher Creatinine1.23 +/- 0.17 v 0.85 +/- 0.06 mg/dL
- Higher proteinuria 4.69 +/- 1.08 v 1.65 +/- 0.43 g/24 h

Carr et al Am J Hyperten 2006

How to optimise outcomes: Hypertension

Intensive treatment in 41 women microalbuminuria or nephropathy

Type 1: N=15, Type 2: N=26

- Blood pressure target <135/85mmHg
- Proteinuria target <300mg/24hrs

More women with type 1 diabetes required antihypertensives

Achieved median BP in early and late pregnancy 128/70mmHg

Only 1/41 women developed nephrotic proteinuria / Stable serum creatinine

But – no differences in preterm delivery and birth weight compared with historic data

Damm et al Diabetes Care 2014

How to optimise outcomes: Hypertension

Retrospective Swedish cohort study – 108 pregnancies – Type 1 diabetes 1988-1999 compared with 2000-2011

More antihypertensive use pre-pregnancy and during pregnancy – but frequently discontinued in early pregnancy

Variable	1988–1999 (n=65)	2000–2011 (n=43)	p value
RAS inhibitor used before pregnancy	16 (26.2) [61]	24 (55.8)	0.002
Pre-eclampsia	34 (52.3)	18 (41.9)	0.29
Proteinuria (g/24 h)			
Prepregnancy	1.50 (0.45-7.70) [13]	0.80 (0.34-4.03) [13]	0.42
1st trimester	1.55 (0.40-11.50) [28]	1.77 (0.33-10.40) [17]	0.59
2nd trimester	2.53 (0.58-22.20) [40]	2.44 (0.42-18.50) [29]	0.63
3rd trimester	5.90 (0.37-22.70) [58]	4.22 (0.45-19.80) [40]	0.17

Klemetti et al Diabetologica 2015

Antenatal care

Control blood sugar

Tight targets

Avoiding hypo's

Unpredictably increasing

requirements (5% per week)

Caution with HbA1c

Control blood pressure

SBP 110-130mmHg

DBP 70-80mmHg

Think PRE-ECLAMPSIA

Monitor kidney and retinal function

Repeat retinopathy assessment at

28 weeks

Multi-disciplinary

Care:

Midwives
Obstetricians

Diabetologist Nephrologist

Nurses Dieticians

Ophthalmologists ...

Monitor proteinuria

Monitor serum creatinine

NOT eGFR

Monitor fetus

Usual monitoring regime

PLUS...fetal cardiac scan

Uterine artery dopplers

Additional fetal growth scans