Summary

- Sultan 12 yr old with T2DM
- Childhood T2DM is different from adult T2DM?
- Treatments for T2DM
- Published clinical trials in childhood T2DM
- Treatment guidelines for T2DM
- Future studies

BBC Panorama – diabetes the hidden killer https://youtu.be/dWhSzQEcPMQ

Sultan

- Presented aged 12 years with foot pain
- Weight 96kg above 99.6 centile for age and gender
- Random glucose 16mmol/L, HbA1c 8.5%
- Raised urate gout allopurinol
- Intensive input dietetic and exercise advice
- Started metformin increased dose to 1 gramme 12 hourly
- Enrolled into clinical trial of GLP-1 agonist more intensive input
- Rescue basal insulin therapy
- Significant psychological issues

How common is T2D in children?

T2D incidence per 100,000 person-years in children and adolescents (0–19 years)*

Is type 2 getting commoner? UK 2005- 2016

• 2006

- 0.35/100,000/year (white UK)
- 1.25/100,000/yr S Asian UK
- 57% girls
- 43% ethnic minorities
- 83% obese,
- 57% acanthosis nigricans, 84% family history of diabetes
- 50% asymptomatic at diagnosis

• 2016

- 0.44/100,000/year (white UK)
- 2.92/100,000/yr S Asian UK
- 67% female

30% increase in white UK Doubling in S Asian UK

(Candler T et al Diabet Med 2018)

(Haines L et al. Diabetes Care 2007) British Paediat

Children and adolescents with diabetes are different from adults with diabetes

ADA 2016 Standards of Care. *Diabetes Care* 2016;39 Suppl 1:S13–S22; Silverstein J et al. *Diabetes Care* 2005;28:186–212.

Difference in presentation of T2D between adults vs children and adolescents

*Not the case in the Asian population

⁺Among children and adolescents with T2D in the SEARCH study (n=1425) DKA prevalence was 5.7% in 2008–2010 (decreased from 11.7% in 2002–2003). Higher prevalence of DKA was associated with younger age at diagnosis, minority race/ethnicity, and male gender³

DKA, diabetic ketoacidosis; PCOS, polycystic ovary syndrome

1. American Diabetes Association. Diabetes Care 2009;32 Suppl 1:S62–67; 2. Reinehr T. Int J Obesity 2005;29:S105–110; 3. Dabelea D et al. Pediatrics 2014;133:e938–945.

Beta cell failure rates in adults vs youth in T2DM

for type 2 Diabetes in Adolescents and Youth; US DOD, U.S. Department of Defense Database; UKPDS, United Kingdom. Prospective Diabetes Study.

Natural history of T2D in children and adolescents

- Faster progression from insulin resistance to T2D than adults, particularly associated with obesity¹
- Early onset associated with complication risk similar to adults and more rapid than in adolescents with T1D²
- High risk for early complications during most productive years of life²
- High risk for rapid loss of glycaemic control in adolescents if unable to attain a non-diabetes range HbA_{1c} on metformin initially^{3,4}

HbA_{1c}, glycosylated haemoglobin; T1D, type 1 diabetes; T2D, type 2 diabetes

1. D'Adamo E, Caprio S. Diabetes Care 2011;34 Suppl 2:S161–S165; 2. Pinhas-Hamiel O, Zeitler P. Lancet 2007;369:1823–1831; 3. American Diabetes Association. Diabetes Care 2000;23:381–389; 4. Zeitler P et al Diabetes Care 2015;38:2285–2292.

Disposition index

Hannon T et al Ann NY Acad Sci

Young people are more insulin resistant than adults, and insulin hypersecretors

Reduced insulin responses from IGT to diabetes

First phase insulin response to glucose

Insulin sensitivity

RISE consortium, Diabetes Care 2018;41:1696-1706

Treatments for children and young people with T2DM

Treatment options of type 2 diabetes in children

Modality	Glycaemia reduction	b -cell enhancing	Insulin resistance lowering	Use	Notes
Diet and Exercise	Yes	Νο	Yes	Yes	First line
Insulin	Yes	Νο	Νο	Yes	Safe, used in children
Metformin	Yes	Νο	Yes	Yes	Safe
Sulphonylure as	Yes	Yes	Νο	?	Safe in adults
Meglitinides	Yes	Yes	Νο	?	Little safety data
Thiazolidinedi ones	Yes	?	Yes	?	Little used
Acarbose or orlistat	?	Νο	Νο	?	Side effects
Surgical treatment	Yes	No	Yes	?	

(Matthews et al, Hormone Research 2002;57(suppl 1):34-39).

Children and young people should have at least 60 minutes of moderate to vigorous physical exercise a day

Most of this exercise should be aerobic Vigorous-intensity activities should be incorporated, including those that strengthen muscle and bone, at least 3 times a week.

GLOBAL RECOMMENDATIONS ON PHYSICAL ACTIVITY FOR HEALTH

Moderate to vigorous physical activity associated with lower cardiometabolic risk factors in children

- Data from 20,871 children collected between 1998 and 2009
- All studies from International Children's Accelerometry Database
- Data on time spent in moderate, vigorous physical activity, sedentary time
- Related to waist circumference, systolic BP, fasting TG's, HDL cholesterol, insulin
- Longer spent in moderate to vigorous physical activity by children was associated with better cardio-metabolic risk profiles regardless of the time spent sedentary

Physical activity associated with lower markers for metabolic syndrome

	Waist circumference (cm)	Systolic Blood Pressure (mmHg) ²	Insulin (pmol/L) ^b	Triglycerides (mg/dl) ^b	HDL-Cholesterol (mg/dl)
Total PA (CMP)	-0.35(-0.50;-0.16)	-0.10(-0.26;0.05)	-0.026 (-0.033 ;-0.020)	-0.021 (-0.026;-0.016)	0.19 (-0.11;0.48)
MVPA (min/d)	-0.52 (-0.76;-0.28)	-0.15 (-0.30;-0.06)	-0.028 (-0.038;-0.017)	-0.017(-0.025;-0.009)	0.25(-0.034;0.53)
Sedentary (min/d)	0.13 (-0.094;0.358)	-0.043 (-0.21;0.20)	0.012 (0.0029;0.022)	0.014 (-0.0031;0.030)	-0.064 (-0.24;0.12)
M VPA adjusted for Sedentary (min/d)	-0.54 (-0.79;-0.30)	-0.17 (-0.30;-0.04)	-0.030 (-0.043 ;-0.017)	-0.014 (-0.023;-0.0046)	0.31 (0.036;0.59)
Sedentary adjusted for MVPA (min/d)	-0.12 (-0.32;0.09)	-0.10(-0.21;0.02)	-0.009 (-0.026,0.008)	0.006 (-0.010;0.023)	0.096 (-0.098;0.29)

Meta-analysis 20,851 children

(Ekelund U et al JAMA 2012;307(7):704-712)

Oral anti-diabetic drugs: Metformin

- Biguanide: decreases hepatic gluconeogenesis, increases peripheral utilisation of glucose
- Needs circulating insulin to work.
- Insulin sensitiser, associated with lower incidence of weight gain, lower plasma insulin levels
- Gastro-intestinal side effects: abdo pain, nausea
- Contraindications: renal impairment; pregnancy

Metformin in children with type 2 diabetes:

Randomised controlled trial in 82 children 10-16yrs for up to 16 weeks. Multicentre: 35 in US, 9 Eastern Europe

Included if: FPG 7.0-13mmol/L; HbA1c≥7.0%, C-peptide ≥0.5nmol/L, BMI >50th centile

Excluded if: diabetes antibodies; DKA; on insulin; hepatic dysfunction

(Lee Jones et al, Diabetes Care;2002:89-94).

Glycaemic control measurements at baseline and last double-blind visit

Variable	Metformin	Placebo	Difference
Baseline FPG	9.0+/-2.7	10.7+/-2.7	
Last visit	7.0+/-2.2	11.5+/-4.5	
Change	-2.4+/-0.5	1.2+/-0.5	-3.6+/-0.8*
Baseline HbA	8.2+/-1.3	8.9+/-1.4	
Last visit	7.2+/-1.2	8.9+/-1.6	
Adjusted mean	7.5+/-0.2	8.6+/-0.2	-1.2+/-0.2*

* P<0.001

TODAY study design

Eligibility at screening

• Age 10-17 years

• GAD-65 and IA-2 antibody negative (absent pancreatic autoimmunity)

• BMI ≥85th percentile

- Fasting C-peptide >0.6 ng/mL
- Willing to participate with a familiar support person

Metformin 1000 mg BID*

Metformin 1000 mg BID* and rosiglitazone 4 mg BID

Metformin 1000 mg BID* and lifestyle therapy⁺

TODAY Study Group. N Engl J Med. 2012;366:2247-56

Primary outcome

- Survival curves for freedom from glycaemic failure
 - HbA_{1c} ≥8.0% for 6 months or persistent metabolic decompensation

HbA1c, glycosylated haemoglobin; TODAY, Treatment Options for type 2 Diabetes in Adolescents and Youth TODAY Study Group. *N Engl J Med.* 2012;366:2247-56

Ellipse Study: efficacy and safety of Liraglutide in children with type 2 diabetes

- The ELLIPSE study was conducted to meet the unmet medical need for treatment of adolescents with T2D and to satisfy regulatory requirements from the EMA and FDA
- A phase 2 study of the GLP-1RA liraglutide demonstrated that approved adult dose ranges may also be appropriate for a paediatric population¹
- The ELLIPSE study subsequently investigated the efficacy and safety of liraglutide as a new treatment option for children and adolescents with T2D

ELLIPSE is the first phase 3 non-metformin trial completed in children and adolescents with T2D

EMA, European Medicines Agency; FDA, Food and Drug Administration; GLP-1RA, glucagon-like peptide-1 receptor agonist 1. Klein DJ et al. *Diabetes Technol Ther* 2014;16:679–687

Ellipse: trial design

Study endpoints

Primary endpoint

Change from baseline in HbA_{1c} at 26 weeks⁺

Secondary endpoints (assessed at week 26)⁺

- Change from baseline in FPG
- Percentage of patients reaching HbA_{1c} <7%
- Change from baseline in BMI SDS

Safety was assessed throughout the trial

Baseline characteristics (1/2)

Characteristic	Liraglutide (N = 66)	Placebo (N = 68)	Total (N = 134)	Characteristic	Liraglutide (N = 66)	Placebo (N = 68)	Total (N = 134)
Age – years	14.6±1.7	14.6±1.7	14.6±1.7	Race or ethnic group – n	o. (%)		
Female sex – %†	62.1	61.8	61.9				
Age of 10 to 14 years				White	42 (63.6)	45 (66.2)	87 (64.9)
at end of trial – no. (%)	21 (31.8)	19 (27.9)	40 (29.9)	Black	9 (13.6)	7 (10.3)	16 (11.9)
Region – no. (%)				Asian	10 (15.2)	8 (11.8)	18 (13.4)
Asia	6 (9.1)	6 (8.8)	12 (9.0)	American Indian or	2 (3.0)	1 (1.5)	3 (2.2)
Europe	24 (36.4)	21 (30.9)	45 (33.6)	Alaska Native			
North America	28 (42.4)	35 (51.5)	63 (47.0)	Native Hawaiian or Other Pacific Islander	0	0	0
Rest of the world	8 (12.1)	6 (8.8)	14 (10.4)	Other	3 (4.5)	7 (10.3)	10 (7.5)

Data are mean \pm standard deviation, or proportion of patients (%). [†]Fulfilling regulatory requirement of including \geq 40% females. Adapted from Table 1, Tamborlane *et al.*, Liraglutide in Children and Adolescents with Type 2 Diabetes, *N Engl J Med* 2019;381:637–46. Copyright © 2019 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society

Baseline characteristics (2/2)

Characteristic	Liraglutide (N = 66)	Placebo (N = 68)	Total (N = 134)	Characteristic	Liraglutide (N = 66)	Placebo (N = 68)	Total (N = 134)
Hispanic or Latino ethnic group – no. (%)				Fasting plasma glucose – mg/dl	156.8±52.2	146.8±38.3	151.7±45.8
Yes	16 (24.2)	23 (33.8)	39 (29.1)	Blood pressure – mm H	5		
No		45 (66.2)		Systolic	118.4±11.4	115.3±12.0	116.8±11.8
	00 (1010)			Diastolic	73.2±8.5	71.2±7.6	72.2±8.1
Duration of diabetes – years	1.9±1.7	1.9±1.3	1.9±1.5	Metformin dose at			
Body weight – kg	93.3±31.0	89.8±22.1	91.5±26.8	baseline – mg	1912±286	1877±384	1894±339
ВМІ	34.55±10.87	33.27±7.36	33.90±9.25	Basal insulin use at base	eline		
BMI SDS score	3.03±1.47	2.86±1.11	2.94±1.30	No. (%) of patients	15 (22.7)	10 (14.7)	25 (18.7)
HbA _{1c} – %	7.87±1.35	7.69±1.34	7.78±1.34	Mean dose – U	29.6±19.5	29.6±17.7	29.6±18.4

Baseline characteristics and demographics overall were similar across both groups

Data are mean ± standard deviation, or proportion of patients (%). Adapted from Table 1, Tamborlane *et al.*, Liraglutide in Children and Adolescents with Type 2 Diabetes, *N Engl J Med* 2019;381:637–46. Copyright © 2019 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society

Change from baseline in HbA_{1c}

Error bars: ± standard error (mean). Means are estimated from MMRM containing treatment, sex and age group as fixed effects and baseline value as covariate, all nested within visit, during the 52week trial period. For MMRM results, data collected after initiation of rescue medication were handled as missing data. Liraglutide: all doses of liraglutide. CI, confidence interval; ETD, estimated treatment difference from the PMM; MMRM, mixed model repeated measurements; PMM, pattern mixture model. Adapted from Figure 2, Tamborlane *et al.*, Liraglutide in Children and Adolescents with Type 2 Diabetes, *N Engl J Med* 2019;381:637–46. Copyright © 2019 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society

Change from baseline in FPG

Error bars: ± standard error (mean). Means are estimated from MMRM containing treatment, sex and age group as fixed effects and baseline value as covariate, all nested within visit during the 52week trial period. For MMRM results, data collected after initiation of rescue medication were handled as missing data. Liraglutide: all doses of liraglutide. CI, confidence interval; ETD, estimated treatment difference from the PMM; FPG, fasting plasma glucose; MMRM, mixed model of repeated measurements; PMM, pattern mixture model. Adapted from Figure 2, Tamborlane *et al.*, Liraglutide in Children and Adolescents with Type 2 Diabetes, *N Engl J Med* 2019;381:637–46. Copyright © 2019 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society

Proportion of patients who attained HbA_{1c} <7.0% at week 26

*p<0.001. Liraglutide: all doses of liraglutide.

Adapted from Suppl Figure 3, Tamborlane *et al.*, Liraglutide in Children and Adolescents with Type 2 Diabetes, *N Engl J Med* 2019;381:637–46. Copyright © 2019 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society

Change from baseline in BMI SDS

Error bars: ± standard error (mean). Means are estimated from MMRM containing treatment, sex and age group as fixed effects and baseline value as covariate, all nested within visit during the 52week trial period. For MMRM results, data collected after initiation of rescue medication were handled as missing data. Liraglutide: all doses of liraglutide. BMI SDS, body mass index standard deviation score; CI, confidence interval; ETD, estimated treatment difference from the PMM; MMRM, mixed model of repeated measurements; PMM, pattern mixture model. Adapted from Figure 2, Tamborlane *et al.*, Liraglutide in Children and Adolescents with Type 2 Diabetes, *N Engl J Med* 2019;381:637–46. Copyright © 2019 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society

Key treatment-emergent AEs – entire 52-week study period

	Liraglutide n=66	Placebo n=68
Events, n (%)	56 (84.8)	55 (80.9)
SAEs, n (%)	9 (13.6)	4 (5.9)
MESIs, n (%)	6 (9.1)	3 (4.4)
AEs leading to treatment discontinuation, n (%)	1 (1.5)*	1 (1.5)
Key AEs (≥5%), n (%)		
Nausea	19 (28.8)	9 (13.2)
Vomiting	17 (25.8)	6 (8.8)
Diarrhoea	15 (22.7)	11 (16.2)
Headache	14 (21.2)	13 (19.1)
Abdominal pain	12 (18.2)	5 (7.4)
Nasopharyngitis	11 (16.7)	19 (27.9)

	Liraglutide n=66	Placebo n=68
Key AEs (≥5%), n (%) (cont.)		
Dizziness	8 (12.1)	2 (2.9)
Gastroenteritis	7 (10.6)	2 (2.9)
Upper respiratory tract infection	6 (9.1)	5 (7.4)
Dyspepsia	5 (7.6)	1 (1.5)
Rash	4 (6.1)	1 (1.5)
Constipation	4 (6.1)	1 (1.5)
Dysmenorrhoea	3 (4.5)	6 (8.8)
Abdominal pain upper	2 (3.0)	8 (11.8)
Rhinorrhoea	1 (1.5)	4 (5.9)
Alanine aminotransferase increased	0 (0.0)	4 (5.9)

[†]One patient on liraglutide with hyperglycaemia AE leading to treatment discontinuation was withdrawn due to non-compliance. Liraglutide: all doses (0.6, 1.2 and 1.8 mg). AE, adverse event; MESI, medical event of special interest; SAE, serious adverse event. Adapted from Suppl Table 5, Tamborlane *et al.*, Liraglutide in Children and Adolescents with Type 2 Diabetes, *N Engl J Med* 2019;381:637–46. Copyright © 2019 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society

Hypoglycaemic episodes – entire 52-week study period

Hypoglycaemia	Liraglutide n=66	Placebo n=68
Minor, ⁺ n (%)	16 (24.2)	7 (10.3)
All hypoglycaemic episodes [‡]	30 (45.5)	17 (25.0)
Severe	0 (0.0)	1 (1.5)
Documented symptomatic	19 (28.8)	6 (8.8)
Asymptomatic	21 (31.8)	12 (17.6)

[†]Minor: symptomatic or asymptomatic hypoglycaemic episode with plasma glucose <3.1 mmol/L. [‡]ADA classification. Liraglutide: all doses (0.6, 1.2 and 1.8 mg). ADA, American Diabetes Association. Adapted from Suppl Table 5, Tamborlane *et al.*, Liraglutide in Children and Adolescents with Type 2 Diabetes, *N Engl J Med* 2019; 381:637–46. Copyright © 2019 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society

ELLIPSE study summary

- At Week 26 and Week 52, liraglutide demonstrated reductions in HbA_{1c} and FPG compared with placebo; superiority* was confirmed at Week 26
- The percentage of participants achieving HbA_{1c} <7% at Week 26 was superior* with liraglutide compared with placebo
- >50% of participants reached liraglutide doses up to 1.8 mg
- Overall, the safety profile of liraglutide is similar to that in adults, although the frequency of hypoglycaemic events was higher in liraglutide than in placebo
- No episodes of severe hypoglycaemia were observed in liraglutide-treated participants

Liraglutide at doses up to 1.8 mg/day (when added to metformin ± basal insulin) offers a new, efficacious and durable treatment option, with an acceptable safety profile, for children and adolescents with T2D in need of improved glycaemic control

*Superiority testing only pre-specified for confirmatory endpoints at Week 26 Tamborlane WV et al. *N Engl J Med* 2019;381:637–646

What about bariatric surgery?

Weight change following bariatric surgery in young people

T2DM remission after 3 years:

94% (gastric bypass)68% (sleeve gastrectomy)

(Inge T et al New Engl J Med 2016;374:113-123)

Ongoing clinical trials – SGLT2 inhibitor Dapagliflozin

New-Onset Diabetes in Overweight Youth Initiate lifestyle management and diabetes education

Summary

- Type 2 diabetes in childhood an emerging health problem in UK
- T2DM a more aggressive disease in children than in adults
- First line treatment always lifestyle, exercise and diet + metformin
- Second line treatment are now licensed alternatives to insulin
- All children under 16yrs should be seen in secondary care, managed in partnership with primary care colleagues

Thankyou!

t.g.barrett@bham.ac.uk

