+ + + + + + CREATING CLARITY

Suffering in silence: spotting signs of feline triaditis

Fabio Procoli

DVM, MVetMed, DACVIM, DECVIM-CA, MRCVS

© 2024 IDEXX Laboratories, Inc. All rights reserved.

Introduction – feline triaditis

Concurrent inflammation of small intestines, pancreas and hepatobiliary system

No standardised diagnostic criteria

Clinically prevalent & relevant - lack of clinical studies

Challenges in definitive and presumptive diagnosis and treatment

Impact of multiple vs single organ inflammation on treatment response and outcome

Chronic enteropathy

Chronic persistent or recurrent GI signs All other causes excluded

Mucosal inflammatory infiltrates

Lymphoplasmacytic, eosinophilic, neutrophilic

Ultrastructural changes

Epithelial injury, villous atrophy, fibrosis, lymphangectasia, crypt disease, goblet cells

Dysbiosis

Bandara Y et al. J Vet Intern Med. 2023;37(3):936-947

Neutrophilic cholangitis (NC)

Key histological features

Neutrophilic infiltration

Affecting bile duct lumen and/or epithelium

Periportal oedema and necrosis

As disease progresses infiltrates cross the limiting plate (cholangiohepatitis)

Chronic phase

Infiltration with lymphocytes and plasma cells

Ductular proliferation

Fibrosis

Snead E, et al. Can Vet J. 2009 Sep;50(9):984–5

Lymphocytic cholangitis (LC)

Key histological features

Infiltration of small lymphocytes restricted to portal areas with variable fibrosis and bile duct proliferation

Proliferation of lymphocytes within the bile duct epithelium and destruction (ductopenia) possible but not typical

Some plasma cells, eosinophils and lipogranulomas possible

Snead E, et al. Can Vet J. 2009 Sep;50(9):984–5

Pancreatitis

Acute pancreatitis (AP) – less common

- Suppurative inflammation
- Oedema and necrosis
- Reversible

Chronic pancreatitis (CP) – more common

Lymphoplasmacytic inflammation

Fibrosis

Atrophy

Irreversible

Clinical prevalence triaditis

Fragkou et al, 2016

47 cats with histopathology available 27 symptomatic vs 20 asymptomatic (healthy undergoing OHE)

More than 1 organ involvement in 27/47 (57.4%)

Two organs involved in 19/47 (40.4%), 10 asymptomatic cats FCE + cholangitis in 16 FCE + pancreatitis in 3

Triaditis 8/47 (17%) All 8 symptomatic (29.6%)

J Vet Intern Med 2016;30:1031-1045

Prevalence and Clinicopathological Features of Triaditis in a Prospective Case Series of Symptomatic and Asymptomatic Cats

F.C. Fragkou, K.K. Adamama-Moraitou, T. Poutahidis, N.N. Prassinos, M. Kritsepi-Konstantinou, P.G. Xenoulis, J.M. Steiner, J.A. Lidbury, J.S. Suchodolski, and T.S. Rallis

Pathogenesis – bacterial translocation

Lidbury JA, Mooyottu S, Jergens AE. Vet Clin North Am Small Anim Pract. 2020;50(5):1135-1156.

Pathogenesis - autoimmune

Intestinal luminal environment

Dysbiosis

Chronic intestinal inflammation

Innate immunity: PAMPs, MAMPs Enhanced permeability Bacterial translocation

Acquired immunity: autoantigens, DAMPs

Chronic lymphocytic cholangitis

Role of reactive hepatitis/cholangitis? MADCAM homing of lymphocytes? Immune attack against bile ducts?

Chronic immune-mediated pancreatitis

Immune injury against ducts?

Lidbury JA, Mooyottu S, Jergens AE. Vet Clin North Am Small Anim Pract. 2020;50(5):1135-1156.

Diagnosing Triaditis

Definitive diagnosis

Histological evidence of inflammation

Cholangitis

Pancreatitis

Lidbury JA, Mooyottu S, Jergens AE. Vet Clin North Am Small Anim Pract. 2020;50(5):1135-1156.

Diagnostic challenges

Histopathology of all 3 organs seldom available

- Food responsiveness of majority of FCE cases
- Limitations of GI histology in predicting response to treatment
- Variability between pathologists
- Invasiveness of pancreatic biopsies
- Equivocal significance of low grade inflammation in absence of clinical signs
- Non invasive diagnosis of neutrophilic cholangitis easily achievable

Signalment

Any breed, age and sex can be affected

Cats with triaditis tend to be older than cats with just FCE or FCE + cholangitis/pancreatitis

Some breed association identified with inflammatory liver disease

NC- British shorthair, Burmese and Persian in UK

LC- Norwegian forest cats in Netherlands

Clinical signs

The most common clinical signs reported

Lethargy – 74% Anorexia – 67% Weight loss – 62% Vomiting – 54% Abnormal feces – 56% Polyphagia – 15%

Physical examination findings

Most common findings

Lethargy – 70% Poor body condition score – 37% Jaundice – 20% Abnormal abdominal palpation – 15% **Thickened intestinal loops** LNs enlargement Pain – 11% Hepatomegaly – 7%

2022 WSAVA guidelines for the recognition, assessment and treatment of pain

AUTHORS:

B. P. Monteiro ^{1,*}, B. D. X. Lascelles [†], J. Murrell [†], S. Robertson ⁵, P. V. M. Steagall ^{1,**} and B. Wright¹

Cats

- Changes in facial expressions (Fig 7)
- Change in body posture or body position (Fig 10)
- Decreased activity and/or playfulness
- Decreased interest in the environment
- Decreased willingness to interact
- Decreased appetite
- Abnormal gait or shifting of weight
- Sitting or lying in abnormal positions (may reflect discomfort and protection of an injured area)
- Quietness, hiding
- Hissing, growling or fear-related aggressiveness
- Attention towards a specific area of the body (usually involving surgical wounds)
- Guarding behaviour
- Cessation of grooming (or increased grooming in one specific location)
- Tail flicking
- Hunched position and/or a tense abdomen†
- Difficulties grasping food and increased head shaking during feeding*
- Depression and immobility; appears tense and distant from the environment§

Spotting pain in cats

Journal of Feline Medicine and Surgery Volume 26, Issue 9, September 2024 © The Author(s) 2024, Article Reuse Guidelines https://doi.org/10.1177/1098612X241260712

Pain and pain management in cats - Original Article

Video-based compilation of acute pain behaviours in

cats

Sabrine Marangoni 🕞 1,2 and Paulo V Steagall 🌔 1,2,3

Laboratory findings

Most common findings

- Mild non-regenerative anaemia
- Mild inflammatory leukogram
- Increased liver enzymes activities
- Increased total bilirubin
- Mild hypoalbuminaemia
- Electrolytes imbalances

	Pancreatitis	Cholangitis	Inflammatory bowel disease
Haematocrit	N or ↓	N or ↓	N or ↓
Leukocytes	N or ↓	N or ↑	N or ↑
Neutrophils	N or ↑ or ↓	N or ↑	N or ↑
Lymphocytes	N or ↑ or ↓	N or ↑ or ↓	N or ↑ or ↓
ALT	N or ↑	N or ↑	Ν
ALP	N or ↑	N or ↑	Ν
Bilirubin	N or ↑	N or ↑	Ν
Bile acids	N or ↑	N or ↑	Ν
Glucose	N or ↑ or ↓	Ν	N or ↑

Černá P, Kilpatrick S, Gunn-Moore DA. J Feline Med Surg. 2020;22(11):1047-1067

Spec fPL® and triaditis

Fragkou et al, 2016					Cats	fPLI (µg/L)
					Group (N) (S/A)	Median (Range)
Spec fP	Ctrl (8) (0/8)	(1) 1.5 ^a (1.3–1.8)				
opeen		10/ 1/ (2			IBD (13) (8/5)	1.7 ^{a,c} (1.2–45)
(c	ut off 3.5 ug	g/L)			Ch (6) (2/4)	(2) $(4.2^{b} (1.6-6.6)$ (4)
、 <u> </u>						$1.9^{a,c}$ (1.2–18.5) (3)
					IBD+Ch+P (8) (8/0)	2.0° (1.5-4.0)
Table 7. Numbers	of cats with serum fPLI co	oncentrations above or	below the cut-off value of	of 3.5 µg/L.	Reference interval	0-3.5
EDI I			Histopathological result	S	MSSDO _{0.05} Kruskal-Wallis P	0.5 .022
Cut-off value (µg/L)	Result (number of cats)	Cats without any inflammatory lesions $(N = 8)$	Cats with other inflammatory lesions, but no lesions of pancreatitis ($N = 34$)	Cats with pance lesions with or without other inflammatory lesions (N = 11)	Possib	le false
3.5	Negative $(n \le 3.5)$	8	25	7	positiv	e – 9

9

Fragkou FC, et al. J Vet Intern Med. 2016 Jul;30(4):1031-45

Positive (n > 3.5)

0

Possible false negative – 7

4

New reference Spec fPL® value

Wu et al, 2022

Unlikely Spec fPL < 4.4 ug/L

Possible Spec fPL 4.5-8.7 ug/L

Pancreatitis probable if Spec fPL> 8.8 ug/L – 99% specificity ORIGINAL ARTICLE

Veterinary Clinical Pathology An International Journal of Laboratory Medicine WILEY

Analytical validation of an ELISA for the measurement of feline pancreas-specific lipase and re-evaluation of the reference interval and decision threshold for diagnosing pancreatitis

Yu-An Wu¹ | Jörg M. Steiner¹ | Elke Huisinga² | Melissa J. Beall² | Jesse Buch² | Geoffrey T. Fosgate³ | Jonathan A. Lidbury¹

Lateral flow immunoassay – SNAP[®] fPLTM

Journal of Feline Medicine and Surgery Volume 25, Issue 7, July 2023 © The Author(s) 2023, Article Reuse Guidelines https://doi.org/10.1177/1098612X231183299

Original Article

Sage Journals

Specificity of a pancreatic lipase point-of-care test and agreement with pancreatic lipase immunoreactivity in cats without clinical evidence of pancreatitis

Panagiotis G Xenoulis [20] ^{1,2}, Katerina T Moraiti (20) ¹, Victoria M Spanou (20) ¹, Manolis K Chatzis¹, Kassiopi CG Kokkinaki¹, Manolis N Saridomichelakis¹, and Jörg M Steiner (20) ²

97.5% concordance for negative results 90% concordance for abnormal results

Journal of Feline Medicine and Surgery Volume 21, Issue 8, August 2019, Pages 700-707 © The Author(s) 2018, Article Reuse Guidelines https://doi.org/10.1177/1098612X18796624

Original Article

Diagnosis of feline pancreatitis with SNAP fPL and Spec fPL

Fanny Schnauß 💿 ^{1,*}, Franziska Hanisch ^{1,*}, and Iwan Anton Burgener²

Strong agreement between Catalyst[®] Pancreatic Lipase Test and Spec[®] fPL[™]

	Overall agreement 87.5%							
			Spec fPL					
5			≤ 4.4 µg/L	4.5–8.7 µg/L	≥ 8.8 µg/L			
	Catalyst PL	≤ 4.4 U/L	52.7%	8.1%	0.0%			
		4.5–8.7 U/L	2.7%	14.2%	0.4%			
	≥ 8.8 U/L	0.0%	1.4%	20.5%				

3			≤ 4.4 µg/L	4.5–8.7 µg/L	≥ 8.8 µg/L	
$\sum_{i=1}^{n}$	Catalyst	≤ 4.4 U/L	86.8%	13.2%	0.0%	100%
սե		4.5–8.7 U/L	15.5%	82.4%	2.0%	100%
		≥ 8.8 U/L	0.0%	6.4%	93.6%	100%

Abdominal ultrasound – evaluation of

GI tract (absolute and relative wall thickness and echogenicity, diffuse vs focal disease)

Mesenteric lymph nodes (size, shape, and echogenicity)

Hepatobiliary system (volume, texture of parenchyma, gallbladder wall thickness and content, diameter and content of intra- and extrahepatic bile ducts)

Pancreas (volume, echogenicity, duct diameter and content, peripancreatic fat)

Allows collection of FNAs or bile samples

Distinguishing FCE vs SCL

Freiche et al, 2021

22 cats with SCL and 22 cats with LPE (FCE)

Small volume abdominal effusion

Rounded and hypoechoic jejunal LN

More prevalent in SCL

 Received: 26 February 2021
 Accepted: 14 September 2021

 DOI: 10.1111/jvim.16272

STANDARD ARTICLE

Clinical, laboratory and ultrasonographic findings differentiating low-grade intestinal T-cell lymphoma from lymphoplasmacytic enteritis in cats

Valérie Freiche¹ | Julien Fages² | Mathieu Victor Paulin³ | Julie Bruneau⁴ | Lucile Couronné⁵ | Alexander J. German⁶ | Dominique Penninck⁷ | Olivier Hermine⁸

Cholangitis

Possible findings

Hepatomegaly

Heterogenous parenchyma

Diffuse or segmental dilatation of bile ducts

Gallbladder and bile ducts walls thickening

RETROSPECTIVE STUDIES

Ultrasonographic Findings of Feline Cholangitis

Angela J. Marolf, DVM, DACVR, Lesley Leach, DVM*, Dabra S. Gibbona, MS, DVM, DACVR¹, Annette Bachand, PhD, David Twedt, DVM, DACVIM

Predictive value of GB ultrasound changes

Policelli Smith et al, 2017

	Cats				
Clinical Finding	Odds Ratio for Positive Bile Culture	95% CI (OR)	P Value		
Abnormal gallbladder ultrasound	21.0	2.6-170	<0.001***		
Thickened wall	6.7	2.2-20.5	0.001***		
Sludge	3.2	1.1-9.3	0.050*		
Wall edema	1.1	0.2-6.5	1.00		
Cholelith	7.4	0.7-75.9	0.089		
Mucosal hyperplasia	2.3	0.3-17.5	0.585		
Mucocele ^a	_		<u>—</u>		

Journal of Veterinary Internal Medicine

Standard Article J Vet Intern Med 2017;31:1451–1458

Association between Gallbladder Ultrasound Findings and Bacterial Culture of Bile in 70 Cats and 202 Dogs

R. Policelli Smith, J.L. Gookin, W. Smolski, M.F. Di Cicco, M. Correa, and G.S. Seiler 🝺

Pancreatitis

Considerations

Variable sensitivity (AP > CP)

Operator dependent

Lag phase vs clinical signs and lipases

Abnormalities might persist beyond clinical resolutions

Poor correlation with lipases

Table 2. Frequencies of US findings among groups.

US Findings Pancreas	PA (n = 27) n (%)	PD (<i>n</i> = 134) <i>n</i> (%)	NP(<i>n</i> = 157) <i>n</i> (%)	<i>p</i> -Value
Enlargement	16 (59) ^{ac}	70 (52) ^a	37 (24) ^b	< 0.0001
Hypoechogenicity	12 (44) ^{ab}	60 (45) ^a	44 (28) ^b	0.008
Hyperechoic mesentery	12 (44) ^{ac}	48 (36) ^a	26 (17) ^b	< 0.0001
Mixed echogenicity	10 (37) ^a	43 (32) ^a	36 (23) ^a	0.11
Hyperechogenicity	8 (30) ^a	24 (18) ^a	18 (11) ^a	0.04
Fluid peripancreatic	4 (15) ^a	11 (8) ^a	12 (8) ^a	0.46

Agreement of serum feline pancreas-specific lipase and colorimetric lipase assays with pancreatic ultrasonographic findings in cats with suspicion of pancreatitis: 161 cases (2008–2012)

Ultrasound guided cholecystocentesis

- Under heavy sedation or general anaesthesia
- Experienced operator
- 23-gauge, 1.5-inch needle attached to an extension set
- Must empty fully gallbladder to reduce risk of bile leakage
- Request cytology and bacterial culture

Avoid if

High risk of bleeding Emphysematous cholecystitis suspected

Percutaneous cholecystocentesis in cats with suspected hepatobiliary disease

Victoria L Byfield^{1*}, Julie E Callahan Clark^{1†}, Bradley J Turek^{2‡}, Charles W Bradley² and Mark P Rondeau¹

Bile cytology

Peters et al, 2016

20% bile samples in cats had some evidence of infection

24% by cytology vs 21% by culture

Journal of Veterinary Internal Medicine	AC ∛ IM
0	pen Access

J Vet Intern Med 2016;30:123-131

Cytological Findings of 140 Bile Samples from Dogs and Cats and Associated Clinical Pathological Data

L.M. Peters, B. Glanemann, O.A. Garden, and B. Szladovits

Isolates – bile culture

80 cats undergoing percutaneous ultrasound-guided cholecystocentesis ^[9]		78 cats undergoing cholecystocentes	70 cats undergoing percutaneous ultrasound-guided cholecystocentesis ^[11]		
Escherichia coli Streptococcus spp. Klebsiella pneumoniae Pseudomonas aeruginosa Enterococcus faecalis	8.8% 2.5% 1.3% 1.3% 1.3%	<i>Escherichia coli Enterococcus</i> spp. <i>Clostridium</i> spp. <i>Proteus</i> spp. <i>Peptostreptococcus</i> spp. Alpha-haemolytic <i>Streptococcus</i>	17.9% 5.1% 2.6% 1.3% 1.3% 1.3%	Escherichia coli Enterococcus spp. Streptococcus spp. Staphylococcus sp. Clostridium spp. Bacillus sp. Enterobacter cloacae	35.7% 14.3% 2.9% 1.4% 1.4% 1.4% 1.4%

Percutaneous cholecystocentesis in cats with suspected hepatobiliary disease

Victoria L Byfield^{1*}, Julie E Callahan Clark^{1†}, Bradley J Turek^{2‡}, Charles W Bradley² and Mark P Rondeau¹

L.M. Peters, B. Glanemann, O.A. Garden, and B. Szladovits

Association between Gallbladder Ultrasound Findings and Bacterial Culture of Bile in 70 Cats and 202 Dogs

R. Policelli Smith, J.L. Gookin, W. Smolski, M.F. Di Cicco, M. Correa, and G.S. Seiler 💿

Cytology

- Poor sensitivity
- No information on
 - Architecture
 - Fibrosis
 - Bile duct changes
- Can show bacteria and/or neutrophilic inflammation
- Poor accordance with gold standard method (histology)

Comparison of Liver Cytology and Biopsy Diagnoses in Dogs and Cats: 56 Cases

Lois Roth, DVM, PhD

Managing triaditis

Considerations

Cats affected by triaditis might be systemically ill

As needed on individual basis Nutritional support Analgesia Intravenous fluid therapy Electrolytes supplementation Antiemetics Vitamin K1 supplementation

Sometimes cats can be treated on out-patient basis (if eating spontaneously around 75% of RER)

Supportive + symptomatic treatment

Based on individual patient assessment

Hydration + volaemia/perfusion status

Electrolytes balance

Pain

Nutritional status/appetite

Vomiting/nausea

Feline grimace scale (FGS)

Evangelista et al, 2019

5 action units, AU – scored from 0 to 2

Ear position

Orbital tightening

Muzzle tension

Whiskers change

Head position

Maximum possible score is 10

Total score of 4 or above suggests analgesia should be considered

Good-excellent inter- and intra-rater reliability FGS detected response to analgesic treatment Valid and reliable tool for acute pain assessment in cats

SCIENTIFIC REPORTS | (2019) 9:19128 | https://doi.org/10.1038/s41598-019-55693-8

OPEN Facial expressions of pain in cats: the development and validation of a Feline Grimace Scale

> Marina C. Evangelista¹, Ryota Watanabe¹, Vivian S. Y. Leung^{1,2}, Beatriz P. Monteiro ¹, Elizabeth O'Toole¹, Daniel S. J. Pang^{1,2,2} & Paulo V. Steagall^{1*}

Analgesia – treat to target

Buprenorphine⁺ 0.02–0.03 mg/kg IV/IM/SC q6–12h

Can also be given transmucosally

Methadone 0.1–0.3 mg/kg IV q4–6h

Gabapentin 5–10 mg/kg PO q8–12h

Maropitant 1 mg/kg SC/IV/PO q24h (visceral analgesia)

Fentanyl 5 µg/kg IV bolus or 2–4 µg/kg/h CRI

Nutritional support

Enteral nutrition

Start as soon as possible

Reverse negative energy balance

Reverse catabolic state

Prevent hepatic lipidosis

Ensure intestinal integrity and function

Feeding tubes

Naso-esophageal/gastric (unstable/coagulopathic cats) Esophagostomy tube (stable cats)

How much?

RER = 70 x (body weight in kg)^{0.75}

Start with 30% of resting energy requirement (RER) for first 24 hrs

Increase by 20% every 24 hrs if well tolerated

Food boluses every 4-5 hrs (alternatively can give as CRI)

If regurgitation or vomiting: stop feeding, reduce meal volume by 50% and restart feeding after 6 hours

Diet composition

Feed a calorie dense food

- High protein (40-45%)
- Moderate fat (40%)
- Low carbohydrates/NFE (< 20%)
- Excessive NFE can cause diarrhea, borborigmi, pain, hyperglycemia and lead to electrolyte imbalances

Disease specific treatment - FCE

Diet trial

Hydrolysed, limited ingredient, low residue, fiber enriched

Microbiota modulating therapies (FMT, pre-probiotics)

Immunosuppressive drugs Prednisolone 1-2 mg/kg SID

Do not use antibiotics routinely

Prevalence of food responsiveness

49-66%

Chronic enteropathy responsive to food?

Adverse food reactions?

Disease specific treatment -cholangitis

Hepatic supportive

S-adenosyl methionine

Silimaryin

Ursodesossicholic acid

Vitamin E

Journal of Veterinary Internal Medicine

Open Access

The Effects of S-Adenosylmethionine on Clinical Pathology and Redox Potential in the Red Blood Cell, Liver, and Bile of Clinically Normal Cats

S.A. Center, J.F. Randolph, K.L. Warner, J. McCabe-McClelland, P. Foureman, W.E. Hoffmann, H.N. Erb

Aetiology-targeting

Antimicrobial treatment (NC) Immunosuppressive treatment (LC)

Antibiotics - NC

Chosen based on culture results

- Empirically in case of negative or non-available culture
- Must have activity against Gram + and Gram -, aerobic and anaerobic
- Must be bactericidal and have good biliary penetration
- IV therapy in critically ill cats

Amoxy-clavulanate – 20 mg/kg PO/IV q 12h Clindamycin - 10-12.5mg/kg PO/IV q12h Pradofloxacin – 7.5 mg/kg PO q24h

How long for?

5-7 days in people – Tokyo guidelines 2018

No guidelines in cats

Minimize duration if underlying cause identified and treated

Repeated bile culture off antibiotics to reduce duration – 2 weeks?

Recommended 4-6 weeks with clinical and laboratorybased monitoring

Immunosuppression - LC

Initial protocol

Prednisolone 1-2 mg/kg PO q24 hours

Taper down every 3 weeks

Monitor liver enzymes

Monitor clinical signs

Long term treatment often required

Refractory forms

Chlorambucil 2mg/cat PO q48-72 hours

20 mg/m² PO q14 days

Cyclosporin 5 mg/kg PO q12 hours

Cyclosporine and chronic pancreatitis

Hoeyrup et al, 2021

19 cases of suspected CP

Inclusion criteria

2 Clinical signs (vomiting, lethargy, hyporexia, weight loss and abdominal pain)

Spec fPL >5.3 g/L in 2 more occasions 21 days apart – old cut off

Cyclosporine Treatment in Cats with Presumed Chronic Pancreatitis—A Retrospective Study MDPI

Nina Hoeyrup ^{1,†}, Thomas Spillmann ² and Linda Toresson ^{1,2,*}

MDPI

Article

Cyclosporine Treatment in Cats with Presumed Chronic Pancreatitis—A Retrospective Study

Nina Hoeyrup ^{1,†}, Thomas Spillmann ² and Linda Toresson ^{1,2,*}

Prognosis

Depends on severity of their disease – good in mild disease

With acute severe disease +/- systemic complications have guarded prognosis

Negative prognostic markers include

Severe hypoalbuminaemia

Neutropaenia

Hypoglycaemia

Hypocalcaemia

EHBO

Clinical case

Meet Flora

12 yrs old FN DSH

Indoor only

Fed a maintenance commercial dry + wet diet

1 month history of weight loss (5% of body weight)

Vomiting, intermittent

Decreasing appetite

Lethargy

No other clinical signs

Physical exam

Quiet, alert responsive

Poor body condition

BCS 3/9

Mild dehydration

Equivocal thickening of intestinal loops

Reminder within normal limits

Clinical and diagnostic staging

Feline grimace scale AUS – 5 (mild pain)

Blood-work

CBC within normal limits Moderate ALT and ALP increase (200 and 250 u/L) Total bilirubin borderline (6.0 µmol/L) Mild hypoalbuminaemia Snap fPL – abnormal T4 (total) 23 13–48 nmol/L

Additional tests

Spec fPL 15.8 μg/l Serum cobalamin 192 ng/mL – fTLI/folate within normal limits PT 9.78 sec (8.0-13.0), aPTT 21.75 (12-25)

Abdominal ultrasound

Once analgesia provided – buprenorphine 0.02–0.03 mg/kg IV q8h

Initial treatment plan

Continue analgesia to effect

- IVFT isotonic solution to correct dehydation (3 ml/kg/h)
- Maropitant 1 mg/kg SQ
- Nasoesophageal feeding tube
 - Highly digestible moderate calories diet (RCW GI)
- Vitamin K1 2.5 mg PO q8 hours
- Cyanocobalamin 250 mcg SQ

Further diagnostics

Ultrasound guided FNA

Liver – neutrophilic inflammation, vacuolar hepatopathy (steatosis)

Pancreas – acinar cell degeneration, neutrophilic inflammation

Cholecystocentesis

bile cytology – neutrophilic

bile culture – heavy growth amoxicillin + clavulanic acid

inflammation with bactibilia

Escherichia coli sensitive to

Further treatment plan

Returned to spontaneous food intake at day 3

Transition from *highly digestible gastrointestinal* to hydrolysed diet

Discontinue analgesia – FGS AUS 2

Discontinued IVFT

Amoxicillin + clavulanic acid 20 mg/kg PO q12 hours

Treat for 2 weeks + advise rpt serum biochemistry and cholecystocentesis

Probiotic – EF SF68

Cyanocobalamin 500 mcg PO q48 hours

Follow-up at 3 weeks

Complete clinical remission

Eating full MER

Repeat serum biochemistry – within normal limits

Repeat serum Spec fPL 2.8 µg/l

Repeat US-guided cholecystocentesis Negative bile culture

Continue probiotic + cyanocobalamin

Plan further follow-up at 3 months time PE, abdominal ultrasound, lab-work

Triaditis

Food responsive FCE Neutrophilic cholangitis Acute pancreatitis

Take home messages

Triaditis is the concurrent presence of FCE, cholangitis and pancreatitis

Real prevalence of triaditis in cats yet to be determined

May occur as a result of an infectious or autoimmune process

Anatomy of the feline GI tract may play role in aetiology due to increased risk of ascending bacterial infections of the liver and pancreas

Ante-mortem diagnosis of triaditis can be challenging

Cats will present with non-specific and overlapping clinical signs

Take home messages

Definitive diagnosis requires histopathology from each organ, hence triaditis remains a presumptive diagnosis in many cases

Early and appropriate medical therapy and nutritional support are crucial in the management of feline triaditis to optimise outcome

Treatment should be focused on the specific type and severity of disease in each of the affected organ

It is often based on symptomatic and supportive treatment

Whenever possible, use of antimicrobials and immunosuppressive drugs should be based on evidence of infection or sterile chronic inflammation

+ + + + + + CREATING CLARITY

OSPEDALE VETERINARIO

Thank you very much for the attention!

© 2024 IDEXX Laboratories, Inc. All rights reserved.

Questions?

