

AKI in dogs and cats: Update on diagnosis and treatment.

Bill Saxon, DVM, DACVIM, DACVECC IDEXX Medical Education Specialist

CKD: progressive, irreversible, no return to normal function

- Persistent (≈ >3 month) abnormality in 1 or more kidney function or structure
 - Azotemia (overt or progressive increase in creat or SDMA within ref interval)
 - Persistent SDMA >14 ug/dL precedes increase in creatinine
 - Persistent renal proteinuria
 - Persistent USG <1.030 dog, <1.035 cat with nonrenal cause excluded
 - Tubular dysfunction, e.g., normoglycemic glucosuria, granular casts, cystatin B
 - Structural abnormality, e.g., small, irregular kidneys, cysts...
- Single abnormality common
 - Proteinuria without azotemia or decreased USG
 - Decreased USG without increased creatinine
- Prerenal or postrenal factors excluded
- Rate of progression variable and hard to predict

AKI: potentially reversible, kidney function may return to normal

- Abrupt decline in kidney function
- Prerenal, renal, postrenal causes
- Earliest evidence found in urine
- Azotemia not always present initially
- AKI may be present on presentation or develop in hospital (unstable patients)
- May lead to CKD

Back in the day...

Today...

Today...

Your AKI patient may have or develop CKD.

Your CKD patient may have concurrent active kidney injury.

Practically speaking:

- AKI and CKD might not be separate processes
- One may be predominant at presentation
 - Stable CKD patient on treatment in for monitoring visit...
 - Crashing emergency patient with marked azotemia...
- Important to remember
 - Both may be present on presentation
 - One may lead to the other
- Key to new understanding
 - CKD can have active injury component which may lead to faster progression
 - AKI severe, sustained, intermittent can lead to CKD
 - Inflammation is likely unifying abnormality...

Causes of AKI: may develop in hospital

Cat

- Obstruction (ureteral, urethral)
- *Lilium spp.* ingestion
- Diuretics (congestive heart failure)
- NSAIDs
- Chemotherapeutics
- Pyelonephritis
- Acute pancreatitis
- Etiology unknown 30%

Dog

- Leptospirosis
- NSAIDs
- Sepsis
- Lyme nephritis
- Grapes/raisin ingestion
- Chemotherapeutics/antifungals
- Aminoglycosides
- Acute pancreatitis
- Congestive heart failure

Rule out ureteral obstruction in cats with AKI

Renal pelvic dilation >13 mm rules in obstruction
No or minimal dilation does not rule out obstruction
<3.4 mm on IV fluids acceptable
Serial ultrasound

AKI risk factors: monitor these patients closely.

Prerenal, renal, postrenal causes.

- Dehydration
- Age very young or old
- Diuretic or nephrotoxic drug therapy
- Hypokalemia or hypercalcemia
- Sepsis
- Congestive heart failure
- Acute pancreatitis
- Systemic hypertension
- CKD

IRIS AKI grading system

Creatinine increase ≥ 0.3 mg/dl in 48h (Or increase 1.5x baseline in 7d)
Urine production <1 ml/kg/h over 6h

Laboratory evidence of *nonazotemic* AKI
SDMA increased
Urinary casts, glucosuria with normoglycemia
Urine cystatin B

AKI dynamic

Improve, worsen, progress to CKD Apply grading scheme daily or more often

Table 1: IRIS AKI Grading Criteria

AKI Grade	Blood Creatinine	Clinical Description	
Grade I	<1.6 mg/dl (<140 µmol/l)	Nonazotemic AKI: a. Documented AKI: (historical, clinical, laboratory, or imaging evidence of AKI, clinical oliguria/anuria, volume responsiveness‡) and/or b. Progressive nonazotemic increase in blood creatinine: ≥ 0.3 mg/dl (≥ 26.4 μmol/l) within 48 h c. Measured oliguria (<1 ml/kg/h)# or anuria over 6 h	
Grade II Rectangul	1.7 – 2.5 mg/dl (141 – 220 μmol/l) ar Snip	Mild AKI: a. Documented AKI and static or progressive azotemia b. Progressive azotemic: increase in blood creatinine; ≥ 0.3 mg/dl ≥ 26.4 μmol/l) within 48 h),or volume responsiveness‡ c. Measured oliguria (<1 ml/kg/h)# or anuria over 6 h	
Grade III	2.6 – 5.0 mg/dl (221 – 439µmol/l)	Moderate to Severe AKI: a. Documented AKI and increasing severities of azotemia and functional renal failure	
Grade IV	5.1 – 10.0 mg/dl (440 – 880 μmol/l)		
Grade V	>10.0 mg/dl (>880 µmol/l)		

			_		
	Day 1	Day 2	Day 3	Day 4	Day 5
Patient 1	0.9	1.5	1.5	1.5	1.7
Patient 2	2.3 CKD	2.5 CKD	2.7	3.5	2.4
Patient 3	5.3	5.2	3.6	2.4	1.6
Patient 4	4.8	5.8	6.9	10.8	RRT
Patient 5	18.2	RRT	RRT	RRT	RRT
Non AKI					

Guidelines | Education | Emerging Themes | About IRIS | Related sites | Renal Week | Hemodialysis Academy

Education

IRIS Staging System

Risk Factors for CKD

Differentiation between Acute kidney injury and chronic kidney disease (updated 2022)

Gilad Segev, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Israel

Hallmarks of AKI (vs CKD)

- History and physical exam
 - Acute onset hours to days
 - Toxin exposure (lily, NSAIDs, anesthetics...)
 - Renomegaly, renal pain
 - Bradycardia/hypothermia (hyperkalemia)
- Lab findings
 - Hyperkalemia
 - Urinalysis abnormalities differ
- Imaging
 - Renomegaly in 70%
 - Hydroureter, pyelectasia, hydronephrosis
 - Ureteral calculi
 - Normal parathyroid gland

Traditional and newer markers to assess kidneys

Functional markers (serum)

BUN

CREA (70-75% function loss before increase)

SDMA (30-40% function loss before increase)

FGF-23 maybe someday

Often normal w/in 1st 48 h of acute injury

Injury markers (urine)

Granular casts

Renal epithelial cells

Proteinuria

Normoglycemic glucosuria

Cystatin B now

Detect subclinical kidney injury before ↓ GFR

Hot Topic: active injury biomarkers.

- Presence in URINE sensitive predictor of acute or sustained renal tubular cell injury
- Released from stressed, damaged, ruptured kidney cells
- Epithelial damage present in AKI precedes increase in functional markers
 - SDMA, creatinine often normal first 48 hr
- Degree of epithelial damage associated with disease progression and survival

"...IRIS encourages more studies to be initiated and ultimately published in peer-reviewed journals to provide the evidence for their use in clinical practice."

AKI: earliest evidence in URINE.

- Proteinuria
- Hematuria
- Pyuria
- Bacteriuria
- Renal epithelial cells
- Glucosuria (normoglycemia)
- + Urine culture
- Granular casts ≈16%
- Decreased urine production
- Decreased USG

Urine Cystatin B detects *active* kidney tubular damage (ALT of the kidney)

Harjen HJ, Anfinsen KP, Hultman J, et al. Evaluation of urinary clusterin and cystatin B as biomarkers for renal injury in dogs envenomated by the European adder (Vipera berus). Top Companion Anim Med. 2022;46:100586. doi:10.1016/J.TCAM.2021. 100586

Starybrat D, Jepson R, Bristow P, et al. Prospective evaluation of novel biomarkers of acute kidney injury in dogs following cardiac surgery under cardiopulmonary bypass. J Vet Emerg Crit Care. 2022; 32(6):733-742. doi:10.1111/VEC.13250

Consider Cystatin B with:

AKI

- Confirm active injury following toxin exposure
- Monitor treatment and recovery from acute injury event
- Monitor high risk patient on NSAIDs
- Monitor kidneys during shock, heat stroke, pancreatitis, envenomation...

CKD

- Predict progression of Stage 1 CKD in dogs
- Identify early CKD (?)

Others...??

AKI treatment:

- Stabilize
- Correct life-threatening hyperkalemia
- Specific treatment if cause identified
- Manage oliguria/anuria
- Monitor for development of CKD

Fluids are a drug – avoid overdose.

Rethinking fluid therapy for kidney disease

- Fluids do not improve kidney function
 - May increase urine volume
- Excess more likely to cause harm than improve kidney function
 - Endothelial glycocalyx degradation
 - Interstitial edema
- Forced diuresis is over
- Apply basic principles
 - Correct dehydration
 - Restore volume
 - Replace ongoing losses, e.g., vomiting, diarrhea...
 - Provide maintenance until eating and drinking normally

IV fluids for AKI

- Avoid excess fluid
 - Decreased GFR and RBF due to increased renal interstitial pressure
 - Tissue hypoxia due to impaired O2 diffusion
- Aim for euvolemia and euhydration
 - CRT, membranes, HR, pulses, mentation, lactate, base excess = perfusion parameters
- Balanced crystalloid with calcium
 - LRs, Hartmann's
 - Normosol-R, Plasma-Lyte 148 no Ca, acetate vasodilatory (?)
- Not 0.9% NaCl even if hyperkalemia
 - Acidifying
 - Afferent arteriolar constriction

IV fluids for AKI, cont'd.

- Correct dehydration in 4-6 hr
 - Body weight (kg) x estimated % dehydration x 1000 = fluid deficit in milliliters
- Provide maintenance and keep up with ongoing losses
 - 44-66 ml/kg/d
- Switch to lower sodium fluid for longer maintenance therapy
 - LRs half-strength with 2.5% dextrose, 0.45% NaCl in 2.5% dextrose
 - Home made: 1:1 dilution of LRs and 0.5% dextrose
- Monitor body weight
 - Know baseline, precise scale, take into account IV catheters, bandages, e collars, etc.
 - 5% BW gain minimum threshold for clinical signs (chemosis, mild interstitial edema, regurgitation)
 - 10% BW gain pulmonary edema, body cavity effusion

IV fluids after nephrotoxin exposure: help or hurt?

- NSAIDs, lily (cat), grapes (dog)
- Fluids at 2-3x maintenance 2-3 d to induce diuresis standard recommendation
 - No evidence that increases toxin excretion or prevents tubular damage
 - Increases ANP which can degrade EG
 - Kidney interstitial edema → ↑ intraparenchymal pressure (rigid capsule) ↓
 perfusion/GFR
- Excessive fluid may contribute to AKI rather than prevent it.
- No mandatory hospitalization for IV fluids
- Use basic principles
 - Correct dehydration/hypovolemia, replace losses from V/D, maintenance if inappetence
 - Discharge when eating and drinking normally w/o excessive losses

Treat life-threatening hyperkalemia

- Hypothermia and bradycardia indications to treat
- 10% calcium gluconate
 - Cardioprotective, buys time
 - 0.5-1.5 ml/kg over 10-15 minutes
- Regular insulin and 50% dextrose
 - ¼ U/kg with 2 gm 50% dextrose/U of insulin
- HCO3 rarely necessary
 - Consider if pH<7.1, HCO3<12 mmol/L
 - BW (kg) \times 0.3 \times (24 HCO3) = mEq HCO3 deficit
 - Give ½ deficit IV over 30 minutes
 - If pH not >7.2 remainder in IV fluids over 2-4 hr

Assume all inappetent cats are 5% dehydrated...and correct

Estimated dehydration	Physical examination reveals:		
<5%	Not detectable		
5-6%	Dry, 'tacky' mucous membranes		
6-8%	Mild decrease skin turgor		
8-10%	Obvious decrease skin turgor, retracted globes		
10-12%	Persistent skin tenting, dull corneas, hypovolemia		
>12%	Death due to hypovolemic shock		

Formula: % dehydration as decimal x BW (kg) x 1000 = ml to administer over 4-24 hr e.g., 5% dehydrated, 5 kg cat $0.05 \times 5 = 0.25 \text{ L} \times 1000 = 250 \text{ ml}$.

If azotemia worsens on IV fluids consider decreasing fluid rate.

Especially if total daily volume exceeds maintenance or if weight gain.

STOP fluids, +/- Lasix 1-4 mg/kg IV

Detect oliguria and anuria

- Measuring urine output important yet often neglected
- Indwelling urinary catheter and closed aseptic collection system optimal
 - Collection bag below patient
 - Daily disinfection of ports, visible portion of catheter, prepuce, etc.
 - Change q2-3 days
- Estimate using absorbent pads when catheterization not possible
 - Weigh before and after use
 - 1 gm = 1 ml
- Oliguria <0.5-1.0 ml/kg/hr
 - AFTER hydration and volume restored (physiologic oliguria)
 - Consider if urine production does not increase after rehydration to 2-5 ml/kg/h
 - Ensure collection system connected, patent

Treating oliguria/anuria simplified

- Furosemide most effective route
 - Loading dose 0.66 mg/kg IV then CRI at 0.66 mg/kg/h (0.5-1.0 mg/kg/h)
- Furosemide simplest route
 - 2 mg/kg IV initially
 - If no urine production within 20-40 minutes
 - 4 then 6 mg/kg IV hourly
 - Effective dose q6-8 h
- Mannitol, dopamine, fenoldopam no
- If no increase in urine production ins and outs +/- renal replacement therapy

Ins and outs for oliguria/anuria

- Never in dehydrated or hypovolemic pets
- Match fluids exactly with urine produced to avoid fluid overload
- Total fluids to administer (and not a drop more) =
 Insensible loss (respiration, feces) 22 ml/kg/d +
 Sensible loss (urine) +
 Ongoing loss (vomiting, diarrhea)
- Given in 4 or 6 hr intervals

In and outs for 5 kg cat, normal hydration, no v/d

Fluids are given in 6 h increments

Insensible loss 20 ml/kg/d \div 4 = 5 ml/kg x 5 kg = 25 ml

Urine production = 0 ml

No v/d = 0 ml

25 ml total volume to administer over next 6 h = 4-5 ml/h

6 hours later...

Urine produced in preceding 6 h = 20 ml Vomitus = 10 ml Insensible loss in 6 h = 25 ml

55 ml total volume to administer over next 6 h = 9-10 ml/h

Repeat calculation every 6 hours until urine production > 1 ml/kg/h

Fluid therapy during recovery phase

- Polyuria may be profound
- Especially with obstructive disease or lepto (dogs)
- Higher fluid rates than any other disease
- Hypokalemia may result add KCI to fluids
- Monitor urine volume, BW, perfusion, hydration parameters and keep up!
- Taper 10-25% per day once stable and continue reassessing

Adjusting drug dosages and/or frequency with AKI

- Important if drug excreted by kidneys
- Interval (hr) = normal interval (h) x serum creatinine
- Dose = normal dose / serum creatinine

Prognosis

- Mortality 58-73%
- Better outcomes with infectious causes
- Degree of azotemia not associated with outcome
- Poor prognostic indicators
 - Decreased urine production
 - Hypothermia
 - Hyperkalemia
 - Hypoalbuminemia
 - Decreased HCO3 at admission
- Kidney dysfunction that lasts >3 months after AKI = CKD

Key Takeways

- AKI can be present on admission or develop in the hospital
- AKI predisposes to CKD and vice versa
- Daily grading using IRIS AKI guidelines is indicated in unstable patients
- Earliest indicators of AKI are in urine
- Azotemia not always present with AKI
- Urine cystatin B is a sensitive marker of kidney tubule damage
- Monitoring body weight and urine output is critical
- Hypervolemia can cause or exacerbate AKI
- Prognosis is generally guarded but better with infectious causes and early appropriate therapy

Thank you!

