UNCLASSIFIED

Force Protection and Weapons Effects

Category: Approved for Public Release Distribution Statement: A

Genevieve Pezzola, PhD

Jason Roth, PhD, Andy Frank, PhD, and Bill Heard, PhD,

U.S. ARMY CORPS OF ENGINEERS
ENGINEER RESEARCH AND DEVELOPMENT CENTER (ERDC)

13 Mar 2024

History in Blast and Ballistics Research

1960: Early WES research for Defense **Nuclear Agency**

Original WES blast load generator built to simulate nuclear blast loads

Pioneering research on ground shock and cratering

Structure and equipment survivability from nuclear effects

/TC '93

1980

Early mechanics for earth penetrating weapons

Conventional weapons effects: Prediction standards

Penetrator effects against hardened structures

Structure protection against terrorist attack

Field fortifications for battlefield protection

RAM basecamp protection

Buried IEDs and VBIEDs

Advanced weapons effects

2020

SNOWBALL '64

DISTANT PLAIN '67

1960

1992: WES named S&PS Lead in **RELIANCE 21**

2000

SEPT 11TH ATTACK

References:

Fatheree. 2006. The History of Geotechnical Engineering at the Waterways Experiment Station, 1932-2000.

Robert E. Walker, verbal communication

Military Research Mission

Utilize State-of-the-Art Modeling and Experimentation to

Investigate Complex Military Challenges and

Framework for Solution Development

MODELING

Physics-based DOD, DOE, and Commercial Codes High-Performance Computing

- Innovative
- Practical
- Effective

MATERIALS

- Formulation
- Manufacturing
- Properties

CONCEPT INCUBATION

- Virtual Experiments
- Physical Experiments
- Optimization

- Blast
- Penetration
- Fragmentation

Blast Effects and Penetration Mechanics

PURPOSE

Investigate fundamental mechanics to grow knowledge on event phenomena

PRODUCTS

Meaningful data, insight and knowledge; validation / development experiments, hypotheses on system solutions, decision support tools

Weapons Effects on Existing & New Facilities

PURPOSE

Develop hardening solutions to protect facilities against emerging weapons

PRODUCTS

New design concepts, hardening strategies, component solutions, criteria, guidance for system solutions

Expedient Protection for Deployed Forces

Develop protective solutions expeditionary environments

New fortification designs, expedient systems, guidance / strategies for forward forces

Example: Traumatic Brain Injury

PROBLEM

Unknown cause(s) of TBI due to blast

HYPOTHESIS

Subtle characteristics of the shock wave environment can be important to TBI potential, especially for personnel inside of structures

Mechanics of low amplitude, attenuated blast wave

- Dynamic pressure
- Homogeneity
- Time scales

Theoretical, Experimental, and Applied Mechanics

Computational Mechanics

Large-Scale Evaluation

Measures: Flow Field - Torso and Cranial Surface Pressure - Intracranial Pressure - Acceleration

Biomechanical response to insult

Example: Localized Blast Effects on Glazing ***

PROBLEM

Mechanics of ballistic glazing failure due to close-in (localized) blast not understood

HYPOTHESIS

Critical failure mechanisms in ballistic glazing exposed to localized blast differ from far-field planar loads; better understanding will drive improved performance

- Metal Plate Simulations: **Quantify load**
- Glazing Simulations: Study mechanical response to definable explosive load

Computational Mechanics

- Study on metal plates
- **Induce various** deformations
- **Deduce load from** "predictable" material response
- Result: Derive a wellcontrolled, localized explosive loading protocol for glazing samples

Theoretical, Experimental, and Applied Mechanics

Large Scale Evaluation

Expedient Forward Operating Base Protection ** LEED \$\times LUS.ARMY

- Wall
- **Guard Tower**
- **Overhead Cover**
- **Mortar Pit**

- **Large Observation Post**
- **Small Observation Post**
- **Single-Bay Aboveground Fighting Position**
- Two-Bay Aboveground Fighting Position
- **Helicopter Revetment**
- Aboveground 20' Milvan Bunker
- **PLS Cargo Bunker**
- **HEMTT-LHS/PLS Bunker**

Modular Protective

System (MPS)

Force Protection in the Urban Environment

Force Protection in the Urban Environment

Protection, Planning, and Visualization Assessment Tool (PPVAT)

Ballistic Resistance Assessment Tool (BRAT) Wall Assessment for Hazard Level Application (WAHL)

Deployed Forces Protection Handbook and Force Protection Portal

Ready Armor Protection for Instant Deployment (RAPID)

- Rapidly deployable protective barrier for critical asset protection and urban operations
 - Ballistic/fragmentation protection
 - Blast protection
 - Vehicle/personnel intrusion prevention
 - Line-of-sight-denial
- Protection level is tailorable using layered armored panels
- Placement and recovery of 35-ft protective wall in less than 20 minutes
 - Wheels and hydraulic system for easy setup
 - No equipment or special tools required
- Easily recovered and reused

RAPID Blast Experiments

Fragmenting Warhead Arena

RAPID – Hostile Vehicle Testing

Deployable Expedient Traffic Entry Regulator (DETER)

- Expedient access control solution to protect critical assets and soft targets from vehicular attacks
 - Active wedge barrier with friction-based mat design.
 - Easily recovered and reused
 - No anchoring required
- Integrated into standard QuadCon ISO container form factor for easy storage, transport, and deployment
- Modular design, incrementally linkable 8-ft width units.

Expedient Retrofit for Existing Buildings (EREB)

- Modular lightweight retrofit to increase the level of protection provided by existing concrete and masonry buildings
 - Protection from ballistic, fragmentation, and blast threats
 - Protection level is tailorable using layered armor panels and existing building properties
 - Modular for any room width and range of room heights
- Each component is less than 60 lbs. and can be installed quickly
 - No equipment or special tools needed for construction
- Easily disassembled and reused

No debris in room after large explosion damaged entire masonry wall

Threat Spectrum and Perspective Shift

Counter-Insurgent Threats

Rockets, Artillery, and Mortars

Small Arms

Near-Peer Threats

Large Rockets and Artillery

Ballistic Missiles

Weaponized UAVs

SABOTAGE

SMALL ARMS IMPROVISED EXPLOSIVE DEVICES ROCKETS ARTILLERY MORTARS

LARGE CALIBER EMERGING THREATS

Weaponized UAV Protection

Expedient Assembly Point Protection

Expeditionary Bunkers

Physical Solutions, Decision Support Tools, Knowledge Products

CONNECT WITH US

Genevieve Pezzola, Ph.D.

Research Civil Engineer Geotechnical and Structures Laboratory U.S. Army Engineer Research and Development Center U.S. Army Corps of Engineers Genevieve.L.Pezzola@usace.army.mil

Scan this QR code with your phone for instant access

