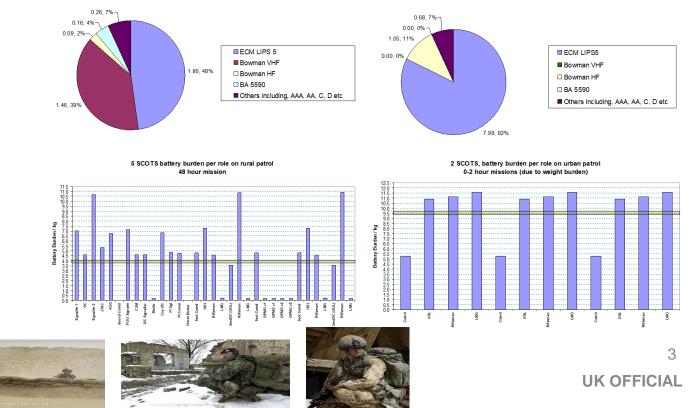

Trends and Opportunities for Soldier Power

Dr Darren Browning

Dstl

UK OFFICIAL

- Power Growth
- Power Sustainment
- Standardisation


Context for a soldier system

5 SCOTS rural patrol, 77 men strong, 48 hour operation, average battery weight per man breakdown (3.76 kg Total)

2 SCOTS urban patrol, 84 men strong, 0-2 hour operation, average battery weight per man breakdown (9.5 kg Total)

Future power

- Increases due to:-
 - Dismounted Situational Awareness (DSA)
 - (phone, hub and data radios)
 - eDSA 7.4 9.4 W av (cdr)
 - Depending on radio choice
 - UAS/UXV control
 - Anti UAS systems
 - Electronic Warfare
 - Increased SA (thermal/ I2)
 - Tactical AI
 - Heads up displays

- Requires:-
 - Bigger or more batteries
 - Better batteries
 - Newer chemistries
 - Battery alternatives
 - E.g. fuel cells, fuel based thermoelectric, micro engines
 - More tactical battery recharge
 - Scavenge energy where possible

4

dstl The Science Inside

Important not just to focus on electrical energy on the soldier but also how that is sustained

- With increasing use of rechargeable batteries that means recharging
 - Appropriate chargers with the correct connectors
 - Flexible chargers
 - Electrical energy for those chargers
 - Fuel for any generators powering the chargers
 - Fuel for any novel power sources e.g. fuel cells
 - Potential for use of renewables e.g. solar and wind
 - But likely need intermediate storage e.g. bigger batteries since can't rely on renewables

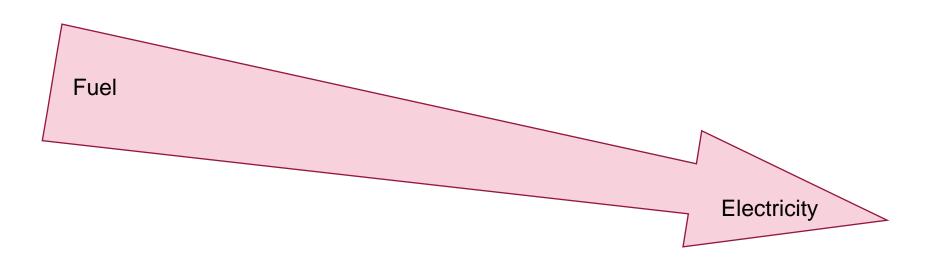
 Normal tempo revolves around perform a mission, come back and recharge batteries

- Is this fast enough?
- Assumes batteries last the mission length
- When batteries don't last mission length need to carry more or "top up" during mission
- Emerging issue is small to medium Uncrewed Aerial Systems (UAS)
 - Typical flight times 20 mins to 1 h
 - After that they are dead weight
 - Need a means to recharge during the mission at section level
 - Sensor Decider Effector Sustainer (SDES) loop

6

The Science Inside

Experimental sustain options


- Scavenge from carried batteries
 - E.g. BB-2590 and CWB "toppers"
- Scavenge from vehicle sources
 - MRZR demonstrated via SPM
 - Exploring IFVs/AFVs etc.
- Renewables much slower
 - Suited to longer missions or base supplementation

©Dstl

dstl The Science Inside

Battlefield energy flow (energy toolkit/golf bag)

dstl The Science Inside

8

Electr

- Electrical energy and batteries are proliferating
- Charging is already an issue
- UAS and UXVs are complicating matters further
- Need to standardise batteries and interfaces where possible
- Can't have a single battery as voltage and size won't be correct
- But can standardise a number of common interfaces and formats
 - Simplifies charging
 - Simplifies logistics
 - Simplifies procurement
 - Allows scavenging

NATO STANAG 4695 & 4851

- Standard soldier power connector & data connector
- Connector has two different pin assignments depending if it is a battery connector or a device connector
 - Battery connector/port needs to communicate with SMBus
 - Device/data ports are USB 2.0
 - Plus additional 10-20 V
- Conceptually this is achieved by connection through a hub device
- The hub enables the SMBus and USB system to co-exist and provide a functional platform for the digitally enabled soldier
- Power capped at 50W, max voltage of 20V
- Based upon US Nett Warrior
- Adopted by UK Generic Soldier Architecture

Pin	NATO Dismounted power connector	NATO dismounted accessory connector (data connector)
1	Power from energy source Positive (10-20 V)	Power (10-20 VDC)
2	Power Ground- extended pin	Ground – extended pin
3	Power to energy source Positive (for rechargeable power sources)	Power (5 VDC @ 2A Max
4	SMBus Data	USB + (data)
5	SMBus Clock	USB – (data)
6	Safety signal [as per reference SBC section 6.1.1	USB Detect

UK OFFICIAL

Future ideas – USB Power Delivery

- USB-PD widely used by commercial systems
 - Phones, many COTS drones
- USB power delivery is enabled by a two wire command and control protocol
 - Defined as CC line connection and a Vconn connection
- VConn provides uninterrupted 5V power for the chipsets within cables/devices
- Data and power roles are independently definable and swappable
 - Not easily achievable in current GSA systems

- Enables a level of control not easily implementable in previous soldier systems
- Defined available voltages from 5V to 48V and powers up to 240W
 - Solves the traditional battery issue that voltage is controlled by number of cells in series
 - Achieved by buckboost converters
 - potential source of inefficiency
- Vendor defined messages possible sit outside standard USB core control
 - Potentially suitable for a military USB environment

The Science Inside

dstl The Science Inside

- Soldier power demands are expected to increase
 - More capable radios, better SA, UAS/anti UAS, tactical AI, EW etc.
- Sustaining soldiers will become more important and more challenging
 - More battery types complicates charging
- Standardisation can simplify logistics and charging
 - Fewer battery types, fewer chargers/charging interfaces
- NATO STANAGS 4695 and 4851 can help
 - But not the complete solution
 - Need smaller interface for UAS perhaps USB-C
 - Can USB-PD and USB-C principles be used for future on soldier connectors?

Discover more

13 UK OFFICIAL