Submarine Damage Control System Spanish Navy Experience

Naval Damage Control (NDC) Conference Farnborough, UK

24 May 2023

LCDR Francisco SOLANO, Spanish Navy

Spanish Navy Submarine Base

Submarines that I have served on

Submarine Damage Control System Spanish Navy Experience AGENDA

- Spanish Navy submarine history & platform control systems evolution
- S-80 Submarine Platform Control System =

Integrated Platform Management System (IPMS) + Non-Integrated Control System

- Use of "Kill-Cards" in IPMS to improve Damage Control System capabilities
- Submarine damage control training, computer-based & mock-up simulators
- Conclusions and recommendations for future platform control systems

It all started with Isaac Peral

Submerged displacement 85 t Crew 12 It was the world's first successful full electric battery-powered submarine, designed and built in Spain by Lieutenant Isaac Peral in 1888.

Spanish Navy Submarine History

S-60 Daphne Class

S60 Class (Daphne-type) Designed in France and built in Spain in 1973 Submerged displacement 1043 t Crew 56

S-70 Agosta Class

S70 Class (Agosta-type) Designed in France and built in Spain in 1983 Submerged displacement 1490 t Crew 60

S-80 Isaac Peral Class

S-80 Isaac Peral Class Designed and built in Spain 2023 Submerged displacement 3000 t Crew 40

Damage Control Lessons Learnt

1. DETECTION IS ESSENTIAL.

- 2. LOCATION WHERE THE INCIDENT IS HAPPENING
- **3. FIRST REACTIONS ARE VITAL TO AVOID THE FIRE-SMOKE SPREAD**
- 4. ELECTRICAL AND MECHANICAL ISOLATION OF COMPARTMENT
- 5. RELIABLE BREATHING EQUIPMENT AND COMMUNICATIONS ARE VITAL
- 6. TRAINING IS CRITICAL.

Platform Control System Requirements Use of Spanish Navy IPMS

1st Generation (Centralized integrated control)

Frigate

2 Generation (Distributed integrated control)

Oceanographic

LPD

Hydrographic

Aircraft Carrier

Patrol Vessel

AOR

Minehunter

Corvette

Lloyd's Register

SOFTWARE ASSESSMENT

3rd Generation (Information System)

Patrol Vessel

Frigate

Submarine

Frigate

Submarine Rescue

Hydrographic

Platform Control System Requirements

- REDUNDANT AND STRONG ARCHITECTURE IN ALL SYSTEMS
- SPECIAL DESIGN IN FIRE RISK COMPARTMENTS (Batteries, Diesel, AIP, Galley)
- DIFFERENT CONTROL MODES: REMOTE (IPMS) AND LOCAL
- NON-INTEGRATED PANELS TO EMERGENCY REACTIONS
- REDUCED NUMBER OF CREWMEMBERS

Platform Control System Architecture

Diving Safety Reserve Panel

Diving Safety Console

Propulsion and Battery Reserve Panel

Platform Control System = IPMS (Integrated Consoles) + Non-Integrated (Panels)

FIXED INSTALLATION OF SPRAYED WATER TO DIESEL AND AIP COMPARTMENT.

- FIXED INSTALLATION OF CO2 TO BATTERIES, MAIN SWITCHBOARDS AND GALLEY WITH BACKUP BOTTLE.
- REDUNDANCY DETECTION IN ALL COMPARTMENTS.
- FROM **NON-INTEGRATED PANELS** STOP VENTILATON, **IS**OLATION AND TRIGGER FIXED INSTALLATIONS.
- CLOSED CIRCUIT OF TELEVISION (CCTV).

1. ACTIVATION OF FIRE DETECTOR.

2. ALARM IN FIRE CENTRAL PANEL.

3. ALARM IN IPMS AND NON-INTEGRATED PANELS, CCTV SHOW IMAGE OF COMPARTMENT AND APPEARS KILL-CARD.

(BAILER) (BAILER)

-

Advantages of Kill Cards

- ✓ Reduced human error
- ✓ Reduced incident response time
- ✓ Increased reliability
- ✓ Increased robustness

Training Process

- Basic Navy training
- Submarine theoretical training phase
 - General submarine knowledge
 - Specific training in accordance with role
- Submarine simulators
 - Computer Based Training (CBT) for platform control system console operators
 - SIMulator of the PLAtform (SIMPLA) with movement for complete duty watch
- Onboard training for all submarine crew members

Antonio de Escaño Training School

-80 NAVANTIS (Training Integrated System)

NAVANTIS AIT

(Virtual Reality Avatar Immersion Tool)

NAVANTIS NMTC (Maintenance Training Content) NAVANTIS PLATFORM

(IPMS, SNIC, Local Control Panels)

- Fully integrated training modules
- Individual training
- Collective training
- Scenarios using submarine 3D model and real equipment and systems data

S-80 Computer Based Trainer (CBT)

S-80 Simulator Platform (SIMPLA)

Onboard Training Drills

-

Conclusions

 $\checkmark Reduced detection time$

✓ Reduced incident response time

✓ Reduced individual and collective/duty watch training times

✓ More complete training

✓ Better use of time on board for training

✓ Higher quality training and analysis by instructors

Future Damage Control Systems

Include IR cameras in CCTV

IPMS on wireless hand-held devices, easy access to information

An exclusive console for Damage Control

? Integrate artificial intelligence into IPMS

Naval Damage Control (NDC) Conference

24 May 2023

LCDR Francisco SOLANO, Spanish Navy