
De-risking Submarine Programmes Through Risk Analysis

24th May 2023 Euan Greenop – Senior Engineer Richard Alker – Consultant Engineer

Agenda

- Introducing BAE Systems
- Benefits of de-risking the submarine programme
- Introducing Common Cause Analysis and Design Tools
 - Zonal Hazard Analysis (ZHA)
 - Hazard Identification and Risk Assessment
 - Computational Fluid Dynamics (CFD)

Introducing Submarines

Faslane **Barrow-in-Furness** Filton/Abbey Wood 50 Devonport Frimley Portsmouth and Broad Oak Weymouth Ottawa

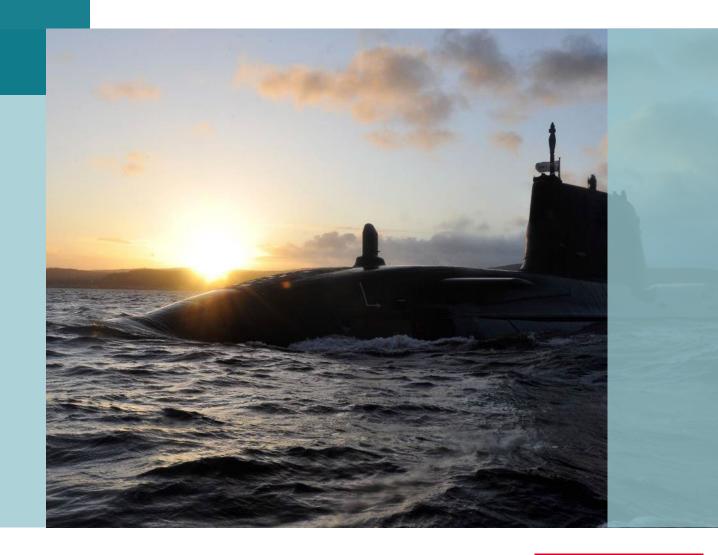
BAE SYSTEMS

We design, build, test, and commission the most advanced submarines ever operated by the Royal Navy. Employing circa **11,300** people across the UK.

.....

Submarines

Astute


- Replacement to Trafalgar Class
- 4 boats in service
- 1 boat recently exited Barrow (Feb 2023)
- 2 boats in build (launch dates 2025-2027)

Dreadnought

- Replacement to Vanguard Class
- Boat 1 ready for patrol in early 2030s
- 3 further boats planned

SSNR

- Replacement to Astute Class
- Currently at the preliminary design stage
- Launch dates 2037-2060

 $\ensuremath{\mathbb{O}}$ 2023 BAE Systems. All Rights Reserved. BAE SYSTEMS is a registered trademark.

Benefits of De-risking the Submarine Programme

You can use an eraser on the drafting table or a sledgehammer on the construction site. Frank Lloyd Wright

- Reduces expenditure during build and operation.
- Reduces delays in manufacture. ٠
- Reduces the potential for harm during build and ٠ operation.
- Improves operational resilience. •
- Ensures the submarine is safe to operate.

UK OFFICIAL

Hazard Identification and Risk Assessment

- A hazard is a event with the potential to cause harm.
- Hazard Identification (HAZID) identifies Hazards on the submarine.
- HAZID considers all part of the lifecycle, where greatest benefit is realised through early adoption.
- HAZID is used to eliminate or mitigate hazards such that they cannot develop into accidents.
- Reduces risk to submariners and the mission.

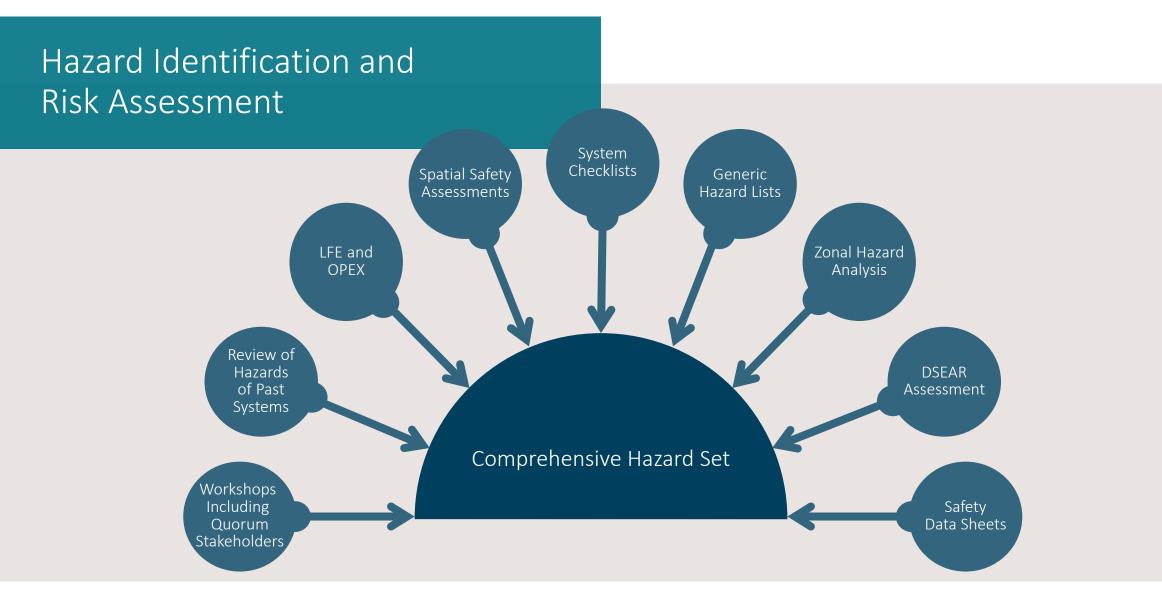
Equipment failure

Solid fuel fire

Liquid pool fire

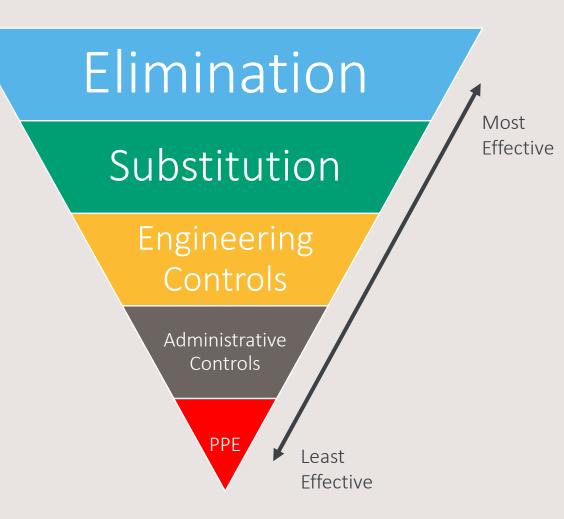
Spray fire

Arc Flash



Explosion

BAE SYSTEMS


7

BAE SYSTEMS

Hazard Identification and Risk Assessment

Accident Frequency	Accident Severity					
	LOS	Catastrophic	Critical	Significant	Marginal	Negligible
Frequent	А	А	А	А	А	В
Probable	А	А	A	А	В	С
Occasional	А	А		В	С	С
Remote	А	А	В	С	С	D
Improbable	В	В	С	С	D	D
Highly Improbable	В	С	С	D	D	D
Incredible	С	С	D	D	D	D

Introducing Common Cause Analysis and Design Tools

Common Cause Analysis

- **Zonal Hazard Analysis (ZHA)** System to system interaction
- Particular Risk Analysis (spatial hazards)

Consequence analysis - Fire, smoke spread, steam releases, flammable atmospheres, flooding, extreme internal pressures, etc...

- CFD is a powerful tool for this analysis
- Common Mode Analysis

Hardware/software error, hardware failure, environmental factors, installation error, etc...

See ARP 4761 for more information, see Guidelines and Methods for Conducting the Safety Process on Civil Airborne Systems and Equipment, <u>https://doi.org/10.4271/ARP4761</u>

BAE SYS1

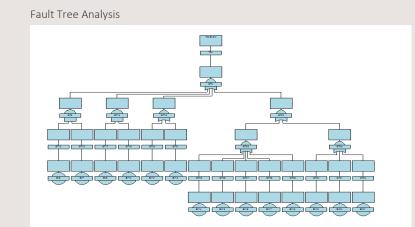
Zonal Hazard Analysis (ZHA)

- An analysis of the layout of a submarine and its systems and equipment.
- Breaks a platform down into manageable zones.
- Removes / reduces hazardous system to system interactions
- Typical zonal hazards include:
 - Water and Electrics,
 - Combustibles and Ignition sources, and Co-locations

Zonal Hazard Analysis is a major part of the civil aircraft safety assessment process described in Aerospace Recommended Practice 4761

Other Common Cause Analysis Methods

• Fault & Event Trees Analysis

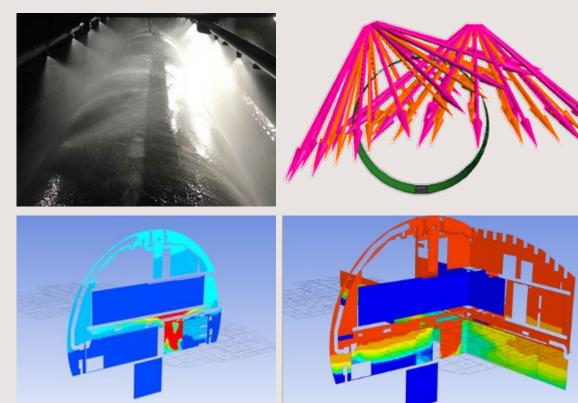

Identify system dependencies and assess the probability of failure on demand

• Accident Sequence Modelling

Identify worse case accident sequence leading to greatest risk of harm

• Critical Systems Threat Analysis

Safe return to the surface following a damage event: fire, flood, steam or extreme internal pressure



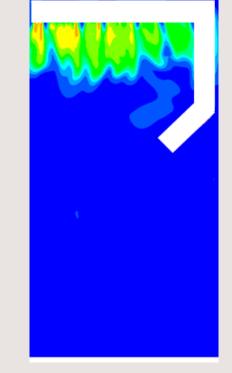
Accident Sequence

Particular Risk Analysis Computational Fluid Dynamics (CFD)

- Embracing new technology to improve the design.
- CFD allows for a digital representation of real world scenarios.
- Where CFD has been applied to de-risk the programme
 - Steam release modelling
 - Fire modelling
 - Performance of water fire suppression
 - Smoke spread
 - Temperature prediction for component withstand

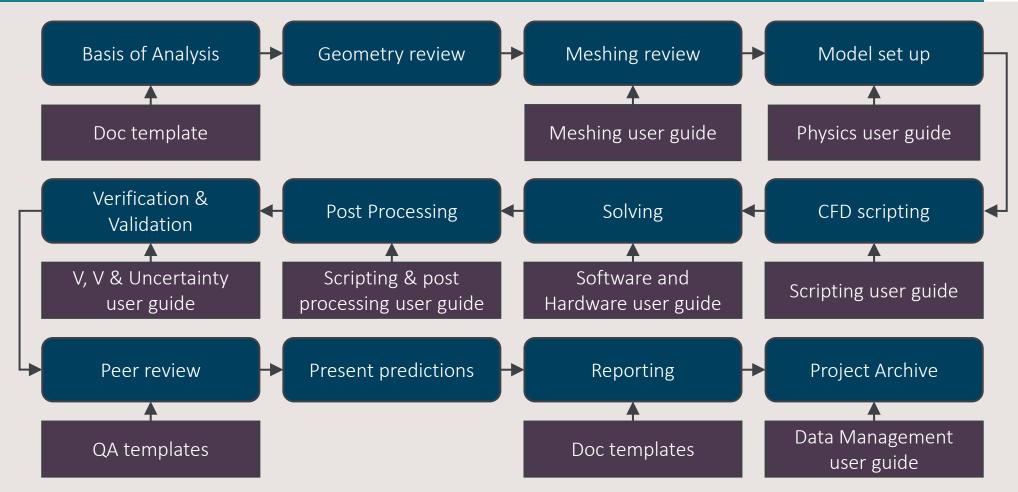
Computational Fluid Dynamics (CFD) – case study

Velocity contour plots Left: Pre CFD design support | Right: Improved design using CFD

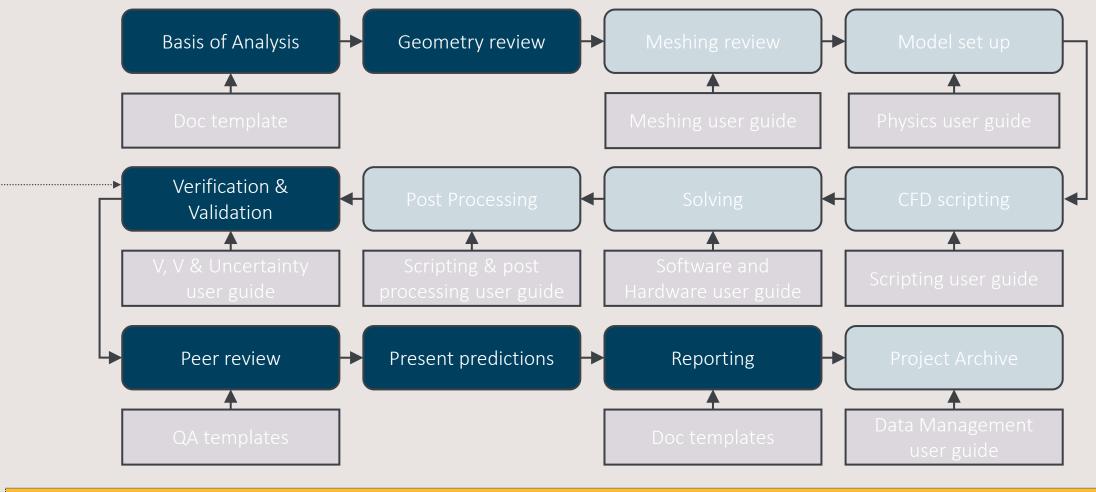

Flow direction

émit hydrogen

© 2023 BAE Systems, All Rights Reserved

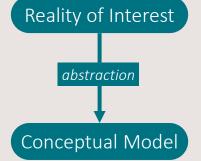

BAE SYSTEMS is a registered trademark

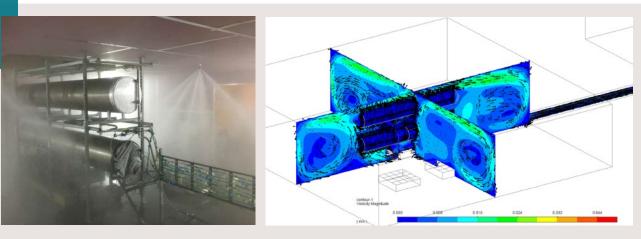
- LFE on fire/explosion caused by ventilation issues and hydrogen
- CFD used to identify potential issue associated to the build up of Hydrogen / poor cooling flow
- CFD used to develop a solution to remove the issue in the design phase

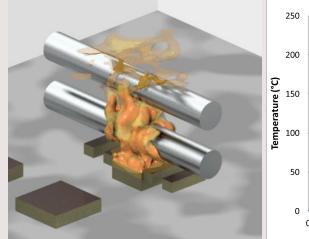


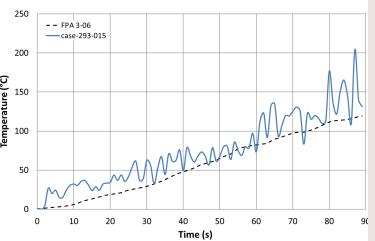
Computational Fluid Dynamics (CFD) – Practitioner workflow

Computational Fluid Dynamics (CFD) – Intelligent Customer Focus




Excellent paper - A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing, Christopher J. Roy a, William L. Oberkampf

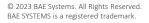

BAE SYSTEMS


Verification and Validation

- Verification checks on the mathematical model
- Validation comparison to a physical test
- Validation strength varies
 - Direct comparison to physical testing
 - Indirect comparison to physical testing
 - Comparison to a different model (e.g. empirical correlations)
 - SQEP judgement

CFD and Physical Testing Benefits and Issues

CFD	Physical Testing
 Benefits <u>Can be</u> faster. <u>Can be</u> cheaper. Performance based approach rather than a prescriptive code base approach. Appropriately validated models are accepted by the regulator as a means of demonstration. Can model scenarios which can not be physically tested. The entire domain can be monitored. Can model a far greater number of scenarios identifying cliff edge and enabling a risk based performance assessment. De-risks physical testing. 	 Benefits More readily accepted by Regulator as a means of demonstration. Unexpected phenomena can be realised. Captures highly complex physical interactions Captures complex material reactions and involvement with fire. Historical confidence in this approach.
 Issues CFD models need to be validated and an appropriate physical test may not be published. Requires specialist hardware, software and users need to be SQEP. Mistakes can be made in the modelling assumptions. Unexpected phenomena can be missed. Not perceived to be as strong safety case evidence as physical testing 	 Issues Can come late in the design where it is difficult to make changes and introduces risk. Can be expensive and a small number of cases considered. Instrumentation can influence the test and be unreliable. Instrumentation can miss phenomena and regions of interest. Sometimes very difficult or impossible to uncover mistakes made in the testing. The conceptual model may be a significant extrapolation from the reality of interest due to budget constraints. There is a high cost with technical oversight and management of the test house.


CFD will never replace all physical testing

The engineer needs to consider the merits of both individually or in conjunction

De-risking Submarine Programmes Through Risk Analysis

