Multi-Sensor Data Fusion Integration of space-based data to enhance maritime operations

CDR (j.g.) Patrick O'Keeffe

Centre of Excellence for Operations in Confined and Shallow Waters (COE CSW)

Who am I?

Institut für Sicherheitspolitik an der Universität Kiel

Global Trends & Challenges

dB FS

-20

40

60

-80

-100 --120

Digitalisation of the Oceans

FRAMinister of Defence (JAN 2022)

"The goal of the new strategy is to equip the French military with the **ability to reach depths of 6,000 meters**"

"This makes it possible to cover 97 percent of the seabed and effectively protect our interests, including sub-marine cables"

"Today, the emergence of drones and remotely operated robots – driven by the needs of industry [and] capable of carrying out operations that meet military objectives at a depth of several thousand meters – are transforming the seabed into a new space for strategic competition"

"One thing is certain: We know space much better than we know the seabed. We now know about space, cyber and artificial intelligence; every frontier of our technological knowledge has been pushed back. But there is still one left: the seabed. This is the last frontier."

DISTRIBUTED

And the second s

Acoustic link

Rf link

1,800 -6 dB 1,600 -12 dB 1,400 -18 dB

24 dB

36 dB

MULTISTATICS

SENSING

4 5 6 Time [s]

Amount of Data is Growing

"Modern equipment used for seabed mapping activities may generate more than 100 GB of data per hour" (2016) Hydrographic processing considerations in the "Big Data" age

DATA TSUNAMI

The rapid growth in ocean information in the past decade has not been accompanied by a rethink of how data are collected, shared and accessed. Historical data-management methods prevent a comprehensive understanding of the impact of human activities on the ocean.

onature

Big Data \Rightarrow Advanced Computing

Space Systems for Maritime Operations

Space Systems for Maritime Operations											
VISION	To increase situational awareness from the seabed to the surface	MISSION	Combining multiple space-based data sources and underwater acoustic analysis with unmanned maritime systems to provide individual workflows for various mission types								
00410	Establishment of a Multi-Sensor Data Fusion Cell (MSDFC)		Unclassified for as long as possible								
GOALS	To support detection, monitoring and identification of objects in any given area of interest	VALUES	Shareable with partners								

	Situation - Challenge - Solution	
Situation	Underwater Situational Awareness requires a sophisticated Surface Situational Awareness	
Challenge	Multiple Data Sources for Surface and Underwater Awareness are available but not yet integrated	
Solution	Multi-Sensor Data Fusion	

Expectations Management

Example: Manual Tracking of the FGS Planet (From Norway to REPMUS 22)

Example: Automatic Surface Contact Detection with Sentinel-1

Example: BlueWhale (IAI / Atlas)

Example: A Typical Day																								
Time:	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
12 SEP																								
Phase Multi-Sensor Data Fusion Cell (MSDFC) reports Contact List			Decis Prepara Deplo	sion & ation for yment	Action in AOI Post Mission Analysis						nalysis	Reporting												
MSDFC	Auto	Auto	Auto	Auto	Auto	Auto	SEMI	SEMI	SEMI	SEMI	SEMI	SEMI	SEMI	SEMI	SEMI	SEMI	SEMI	SEMI	SEMI	SEMI	SEMI	SEMI	SEMI	SEMI
RF			CPT: 02:01			DLV: 05:30							12:23								20:12			
SAR		CPT: 01:26				DLV: 05:30								13:34										
OPT								07:23	Ĺ,				12:36	99			8 - S		18:34	8				
UAV 1									08:30		10:30													
UAV 2										09:00		11:30						17:30						
SB										09:30			-				16:45							
AUV									Ĵ	09:00								17:15						
Team						,																		o
TM 1																								
TM 2																								
TM 3								8																

Manual Mode \Rightarrow Automatic Systems

Thank you very much for your attention!

Questions?

CDR (j.g.) Patrick O'Keeffe

Centre of Excellence for Operations in Confined and Shallow Waters (COE CSW)

