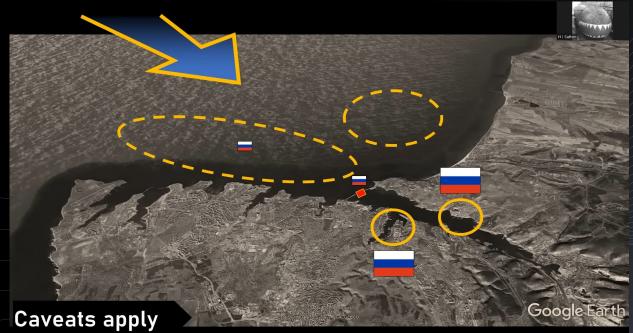
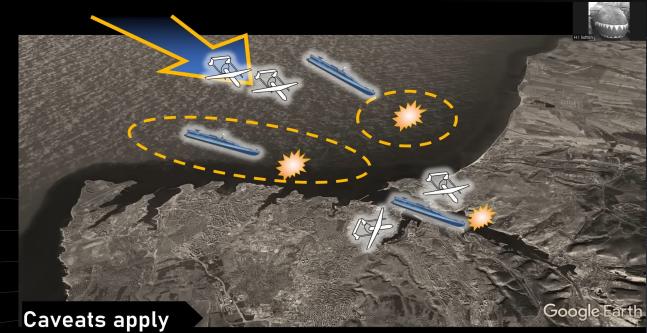

Future Warship Design

Concept Design Overview for a Multi-Mission Drone Carrier Warship

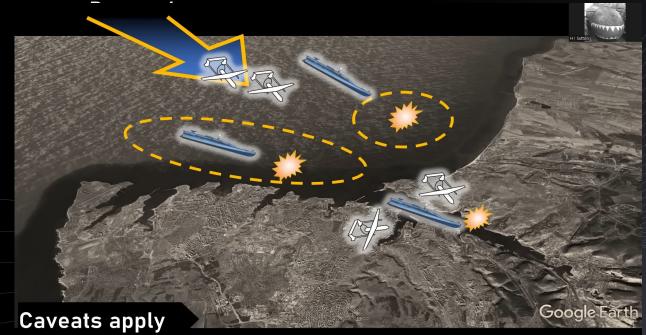
1. Introduction & Agenda

Agenda

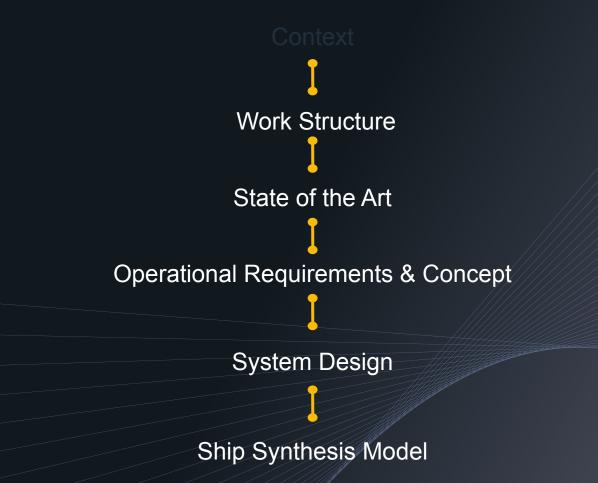

> Sevastopol Naval Base: Admiral Makarov Frigate & Mi-8/17 Helicopter



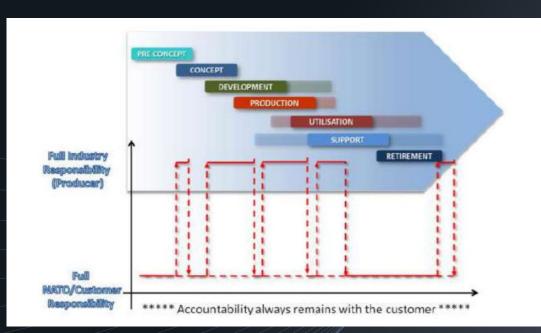
2 Main Anchorage Areas: Frigates & Submarines


Covert Shores

UAV [9] & USV [7] Combined Attack

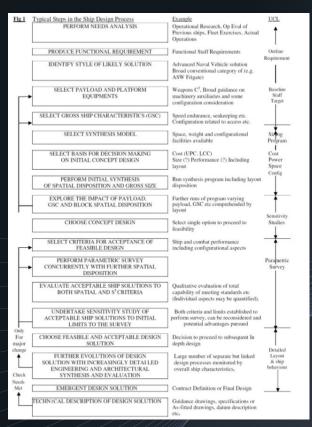

Covert Shores

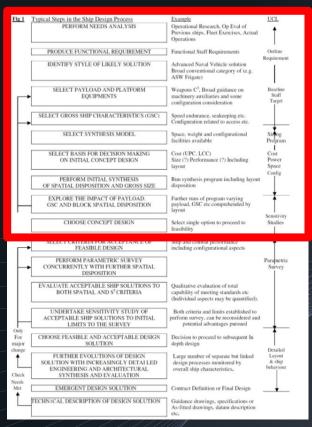
> 2 Damaged Warships: Frigate & Minesweeper Service Vessel and Dam infrastructure also

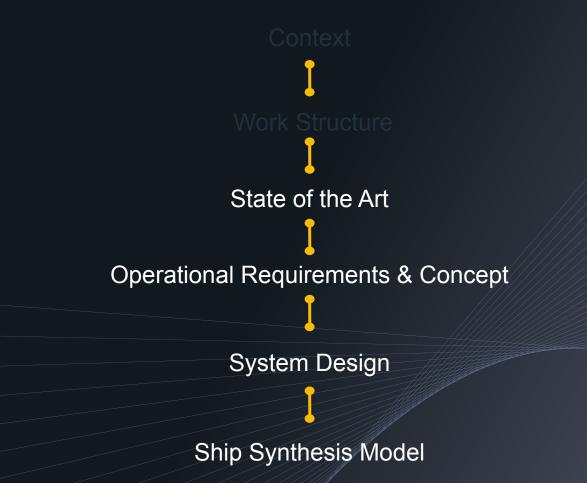


Covert Shores

Agenda


NATO AAP-20: NATO Programme Management Framework


NATO AAP-20: NATO Programme Management Framework

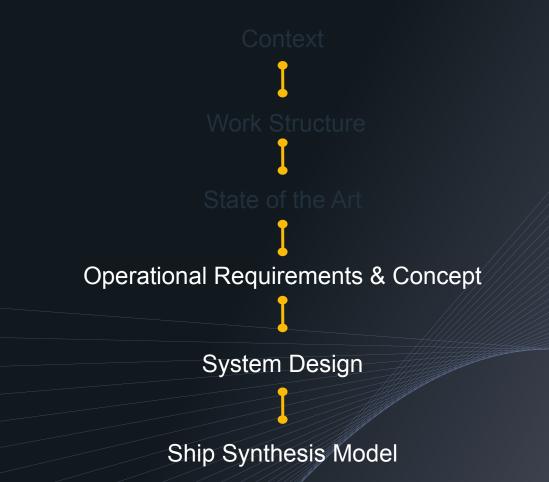

University College London & RN Procedures

University College London & RN Procedures

Agenda

4. State of the Art

4. State of the Art


- Zhu Hai Yun (PLA Navy);
- TCG Anadolu (Turkish Navy);
- Drone carrier concept vessel (PoN);
- UXV Combatant (BAE Systems);
- Octopoda 500 (Mauric);

4. State of the Art

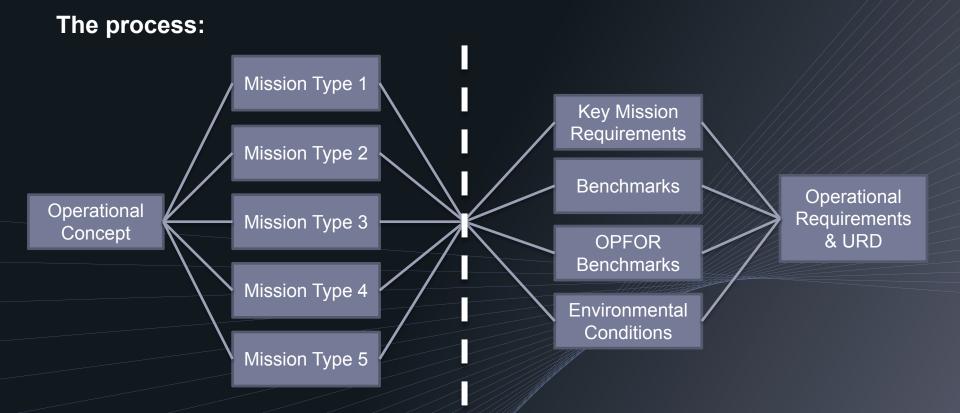
- Key Notes & Takeaways;
- Operational use context;

Agenda

5. Operational Concept & Requirements

5. Operational Concept Development

4 Key-Questions:


"What Market sector will the solution be aimed at?"

"What areas will the ship operate in?"

"In what context will it operate in?"

"How will the concept solution's sucess be measured?"

5. Operational Concept Development

5. Mission Type 1: Example

Coastal & Infrastructure Strike Operations

Area of Operations

Tuo-Chiang Class

Visby Class

5. Mission Type 1: Example

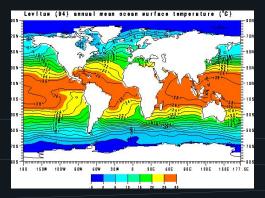
Coastal & Infrastructure Strike Operations

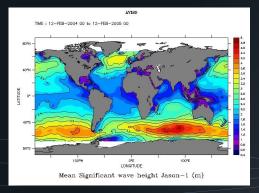
OPFOR Benchmarks

- Udaloy Class Destroyers
- Admiral Gorshkov Class Frigates
- Admiral Grigorovich Class Frigates;
- Neustrashimyy Class Frigates;
- Buyan-M Class Corvettes;
- Karakurt Class Corvettes;
- Steregushchiy Class Corvettes;
- Project 22160 Class Patrol Ships;
- Grachonok Class Patrol Boats;
- Raptor Class Patrol Boats;
- Kilo Class Submarines;
- K-300P Bastion-P coastal defence system;
- A-222E Bereg-E 130mm coastal mobile artillery system;
- 9M133 Kornet portable guided missile system;
- Sukhoi Su-24 bombers;
- Tupolev Tu-22M bomber;
- Mikoyan MiG-29 fighter aircraft;
- Various mines using Soviet Era technology:

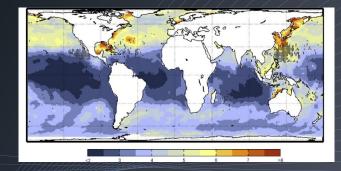
5. Mission Type 1: Example

Coastal & Infrastructure Strike Operations

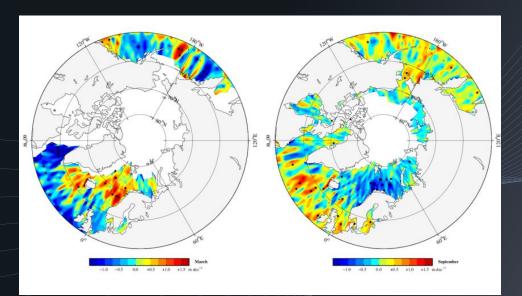



- Maximum Speed: 35 knots;
- Protective countermeasures and CUAVs and/or VLS missile systems capable of effectively countering small patrol boats (Range >5,500 metres);
- Composite material hull to minimise magnetic signature and reduce the threats of mines;
- Carry USVs capable of performing ASW reconnaissance and deploying countermeasures;
- Radar and threat detection systems with a range of over 300 km;
- Deploy and retrieve USV, UAV and manned vessels at a minimum distance of 150 km from shore;
- Carry manned craft to transport special operation forces to and from shore (2 teams of 12 operators);
- Carry a minimum of 5 long range reconnaissance UAVs supplemented by 6 long range CUAVs;
- Carry up to 10 USVs designed to carry explosive payloads between 50 and 200 kg;
- CHAFF and decoy countermeasures for missile defence purposes;
- Deploy up to 2 medium to large MM-USVs;
- Minimise both its radar cross section, acoustic and infrared detectability;

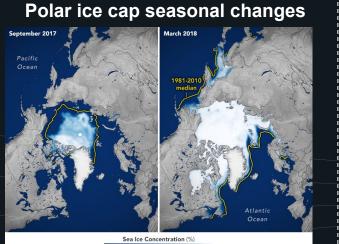
North Atlantic


Surface Temperature

Significant Wave Height

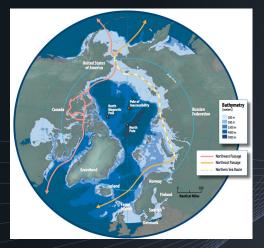


Average Sea States

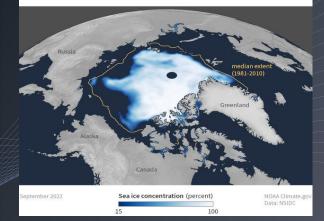


North Sea, Baltic, Arctic

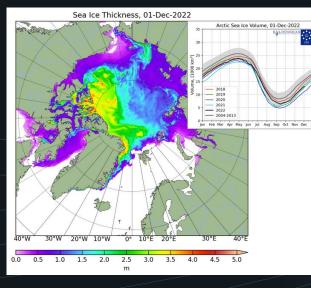
Average Seasonal Surface Temperature



North Sea, Baltic, Arctic


25 50 75 100

Arctic Navigation Pathways


Ice cap reduction (1981, 2010, 2022)

2022 SUMMER MINIMUM

North Sea, Baltic, Arctic

Mean Ice Thickness (2022)

Main Takeaways:

- Unmanned systems temperature requirements;
- Topside Sensors & Effectors: ice & temperature requirements;
- IMO Polar code Ice class PC(7);
- DNV-RU-SHIP: Cold Climate ICE-C Class;
- Flight deck, bridge and auxiliary requirements;

5. User Requirement Document (URD)

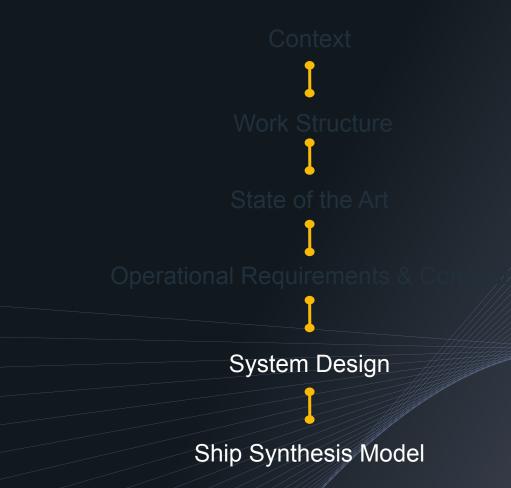
ANNEX ANNEX A: User Requirement Document (URD)

USER REQUIREMENT DOCUMENT (URD)

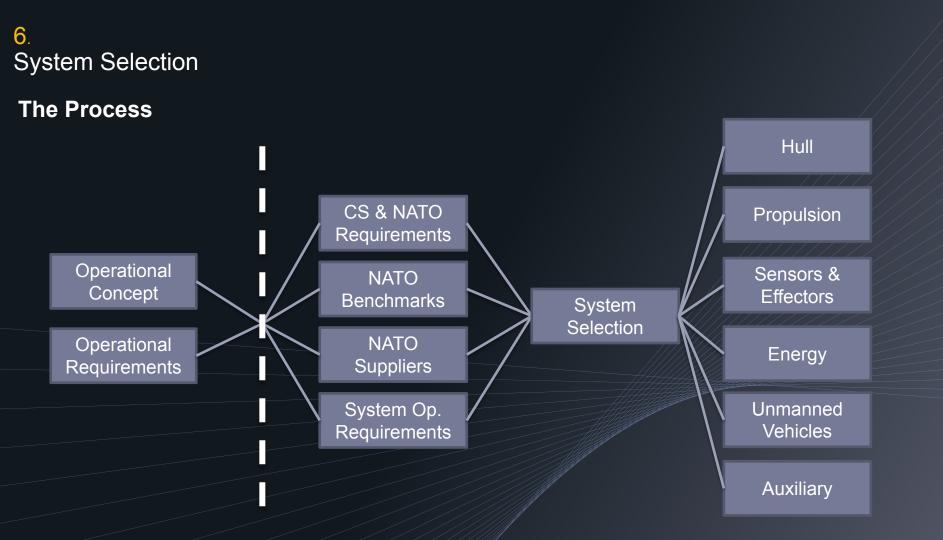
DRONE CARRIER CONCEPT DESIGN

1. MISSION

- a. Drone carrier ship, designed to carry various payloads of organic unmanned vehicles in order to perform operations individually, outside of a conventional task force, or integrated into a naval task force within a support role.
- b. Standard missions for the vessel will include:
 - i. Territorial water reconnaissance & patrol;
 - Humanitarian relief in crisis events;
 Infrastructure and coastal raiding operations;
 - Infrastructure and coastal raiding opera iv. Task force unmanned systems support:
- 2. CONSTRAINTS / INITIAL DESIGN DECISIONS
- a. Minimize production costs and consider robust systems that don't require high maintenance costs:
- b. Minimize thermal, acoustic and radar signatures;
- c. Mission availability of a minimum of 300 days per year;
- d. Dapacity to operate in sea states up to four in the Douglas scale and wind conditions of five in the Beaufort scale.
- e. Maximum draft of 8 meters (limits set considering the naval port of Den Helder);
- Maximum length of 200 meters (limits set considering the naval port of Den Helder);
 The ship should have CODLAG propulsion:
- g. The ship should have CODLAG propulsion,
 h. The ship should be able to organically integrate unmanned aerial, surface and underwater
- vehicles;
- VTOL launch and retrieval capabilities should be assured through the use of a flight deck;
- j. A well dock with a moon pool will be used to deploy all surface and underwater vehicles;
 k. Hull extrusions, including superstructure, should be minimized in order to reduce radar
- signature; 1. The ship should be able to operate in cold climate conditions and in water with floating ice
- (Arctic Ocean, Baltic and North Sea) considering a Polar class classification of E or above; 3. PRIMARY TASKS
 - Territorial water reconnaissance and patrol missions, including boarding operations within the contexto of vessel and small craft inspection operations;
 Search and recuce operations:
 - c. Coastal infrastructure raiding operations;

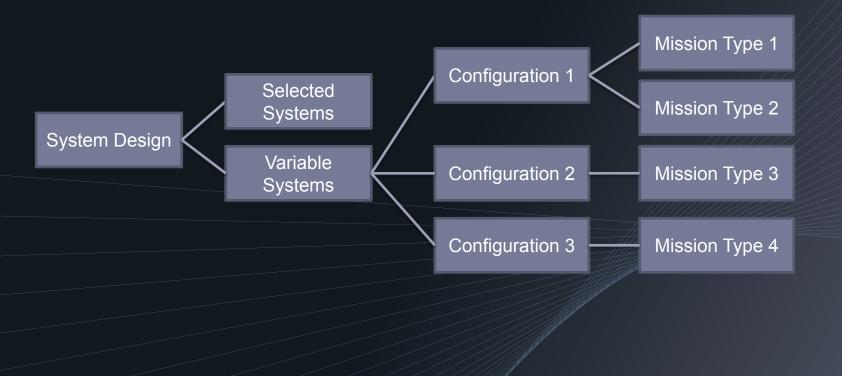

- SECONDARY TASKS
- a. Task force support;
- b. Naval presence;
- Supporting economic and scientific research activities within the vessel's area of operations;
 Crisis response and humanitarian aid missions;
- d. Crisis response and hu
- OPERATIONAL AREA a. North Atlantic Ocean;
- North Atlantic Ocean;
 Norwegian, North, Barents, Baltic and Kara Seas;
- c. Arctic Ocean (select missions);
- AUTONOMY AND LOGISTICS
- Capable of sailing during 20 days at a speed of 16 knots;
- b. Capable of sailing during 8 hours at a maximum speed of 35 knots;
 c. Supply autonomy for 30 days, considering normal operating crew sizes;
- Supply autonomy for 30 days, considering normal operating crew s
- d. Capable of resupplying at any port of commercial terminal used by NATO navies within its area of operations;
 e. Capable of supplying emergency medical services on board, considering integrated combat
- infirmary and operating room facilities;
- f. Capable of performing VERTREP operations;
- g. Capable of receiving and processing floating logistic packages through the use of its well dock;

7. CREW


- The amount of personnel needed to operate the ship as well as its systems should be minimized;
- b. The ship should be able to accommodate extra crewmembers depending on the assigned mission (including special operations teams, divers, border control agents, police and homeland security teams);
- c. Capable of accommodating up to 50 distressed personnel or migrants up to 30 hours on board;
- RELIABILITY AND MAINTENANCE
- The ship's maintenance concept should be focused on maintainability at sea, as the ship will have long sailing periods without coming to port;
- Regular dockings and preventive maintenance based at shore should be accounted for however, in order to ensure adequate system maintenance;
- c. The propulsion system as well as rescue craft systems should be reliable enough, or redundancies should be ensured, in order not to compromise critical mission success in the case of rescue at sea operations or crisis response missions;
- SYSTEM USAGE
- Life cycle: ship designed for a life cycle of 30 years;

- Defined main ship operational and technical requirements on the final user's end;
- Will serve as reference for final concept adequacy evaluation;
- Guideline for system selection and initial design decisions;
- Base-line restrictions set for ship synthesis model & initial sizing;
- Definition of operational capability metrics for design evaluation;

Agenda



6. System Selection

The Process

6. System Selection Example: Hull

- Available well dock space (5)
- Arctic water viability (5)
- Speed (4)

- Acquisition Costs (3)
- Deck Space (3)

- Stability (3)
- Maintainability & Reliability (2)
- Manoeuverability (1)

Hull Type	Available Well Dock Space	Arctic Water Viability	Speed	Acquisition Costs	Deck Space	Stability	Reliability	Manoeuverability	Average
Monohull	5	5	3	5	3	3	5	3	4.15
SWATH	0	3	4	2	5	5	2	1	2.77
Catamaran	1	2	5	4	5	5	3	2	3.27
Trimaran	4	3	5	3	4	4	4	4	3.85
Hydrofoil	4	1	5	1	3	2	2	5	2.77

6. System Selection Example: Hull

- Available well dock space (5)
- Arctic water viability (5)
- Speed (4)

- Acquisition Costs (3)
- Deck Space (3)

- Stability (3)
- Maintainability & Reliability (2)
- Manoeuverability (1)

Hull Type	Available Well Dock Space	Arctic Water Viability	Speed	Acquisition Costs	Deck Space	Stability	Reliability	Manoeuverability	Average
 Monohull	5	5	3	5	3	3	5	3	4.15
 SWATH	0	3	4	2	5	5	2	1	2.77
Catamaran	1	2	5	4	5	5	3	2	3.27
Trimaran	4	3	5	3	4	4	4	4	3.85
Hydrofoil	4	1	5	1	3	2	2	5	2.77

6. System Selection

Example: Unmanned Payload 1

Mission Scenario: Coastal Raiding/Strike With amphibious capabilities

Variable Payload Requirements:

Zodiac MM RHIB [3]

Or: SDV [3]

UAV (Recon) [10]

UAV (Loitering) [60]

UCAV [3]

USV (Loitering) [20]

6. System Selection

Example: Unmanned Payload 2

Mission Scenario: ASW Task Force Support

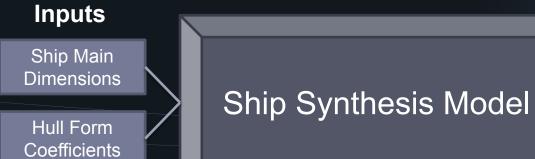
Variable Payload Requirements:

Helicopter [1-2]

USV (MM) [2]

UAV (Recon) [10]

UUV (Loitering) [20]


UUV (MM) [2]

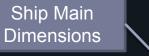
Agenda

Ship Synthesis Model

Ship Synthesis Model

Resistance & Propulsion	Weight Groups [SWBS Based]	Weight Distribution
Volume Distribution	Stability Calculations	Voyage / Operations Model
Endurance & Autonomy Calculations	Complement & Crew Calculations	Costing Model
Unmanned Payload & Systems Database	Cost/Capability Calculations	Naval Ship Database

Ship Main Dimensions

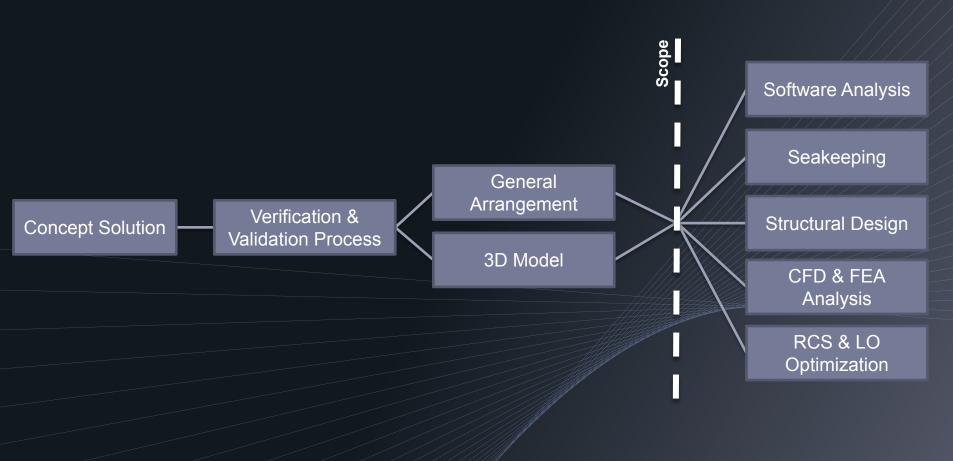

Hull Form Coefficients

Ship Synthesis Model

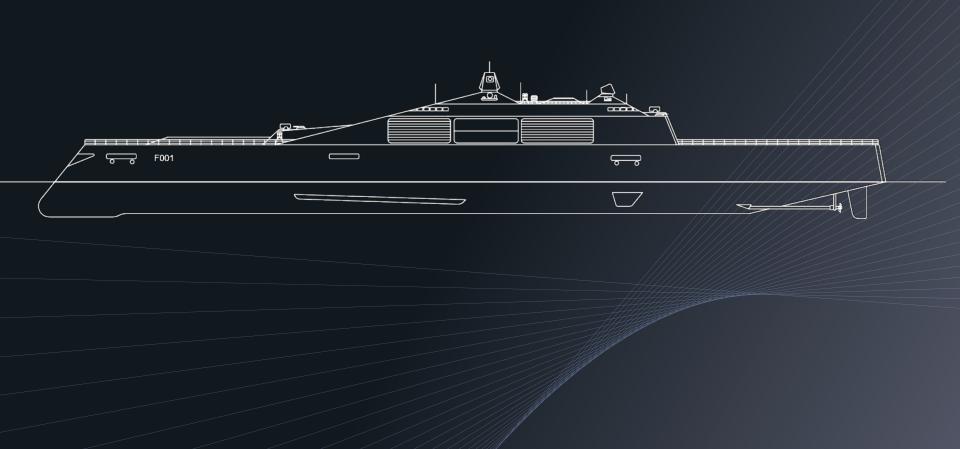
Cost/Capability Optimization

Restrictions & Requirements

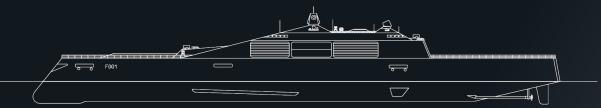
Concept Solution




Hull Form Coefficients


Inputs

Ship Synthesis Model


Non-linear Optimization Algorithm

Operational Requirements						
Variable	Min	Obtained	Units	Check		
Maximum Speed	35	35	knots	COMPLIANT		
Service Speed	12	12	knots	COMPLIANT		
Radar Coverage	1500	2400	nm^2/hour	COMPLIANT		
Range	4000	6557	nm	COMPLIANT		
USV Capacity (Peacetime)	2	2	EA	COMPLIANT		
Self Defence Capability	Yes	Yes	Y/N	COMPLIANT		
Missile System Range	5.5	50	km	COMPLIANT		
UAV system range (Loitering)	22	250	km	COMPLIANT		
UAV system range (UCAV)	150	250	km	COMPLIANT		
Radar detection range	300	320	km	COMPLIANT		
UCAV Range	150	3 941	km	COMPLIANT		
Troop Transport Capability	24	32	PAX	COMPLIANT		
Long range recon UAV #	5	15	EA	COMPLIANT		
UCAV#	5	6	EA	COMPLIANT		
Loitering Munitions USVs	10	252	EA	COMPLIANT		
Decoy Countermeasures	Yes	Yes	Y/N	COMPLIANT		
MM-USV #	2	2	EA	COMPLIANT		
HERO-400EC	50	105	EA	COMPLIANT		
HERO-900	40	84	EA	COMPLIANT		
HERO-1250	30	63	EA	COMPLIANT		
XQ Valkyrie	5	6	EA	COMPLIANT		
Camcopter	4	15	EA	COMPLIANT		
AR3 Tekever	10	24	EA	COMPLIANT		
Propulsion Type	CODLAG	CODLAG		COMPLIANT		
VLS modules	5	6	EA	COMPLIANT		
Decoy System Suite	Yes	Yes	Y/N	COMPLIANT		
Counter Unmanned	Yes	Yes	Y/N	COMPLIANT		
Sonar	Yes	Yes	Y/N	COMPLIANT		
Hangar	Yes	Yes	Y/N	COMPLIANT		
Mission Bay	Yes	Yes	Y/N	COMPLIANT		
Hull Type	Monohull	Monohull		COMPLIANT		
Missile Cells	20	24		COMPLIANT		

Main Ship Details					
Variable	Units	Obtained			
Length	m	159			
Breadth	m	19			
Depth	m	12			
Draught	m	7			
Displacement	t	8485			
Cost	[M]US\$	557			
Range	nm	6557			
Service Speed	knots	12			
Max. Speed	knots	35			
Propulsion Type		CODLAG			
Complement	PAX	225			
UAV [Recon]	EA	39			
UAV [Loitering]	EA	252			
UAV [Combat]	EA	6			
USV [MM]	EA	2			
USV [loitering]	EA	35			
RHIB	EA	2			

9. Something Special

Future Warship Design

Concept Design Overview for a Multi-Mission Drone Carrier Warship

