

Cdr Ian Danbury RN (Rtd) – Royal Navy ASW Spearhead Team
NATO SDI & OPEX
Formerly NATO DDir MUSIC^2 & REPMUS Coordinator

lan.Danbury314@mod.gov.uk

CNE 2023

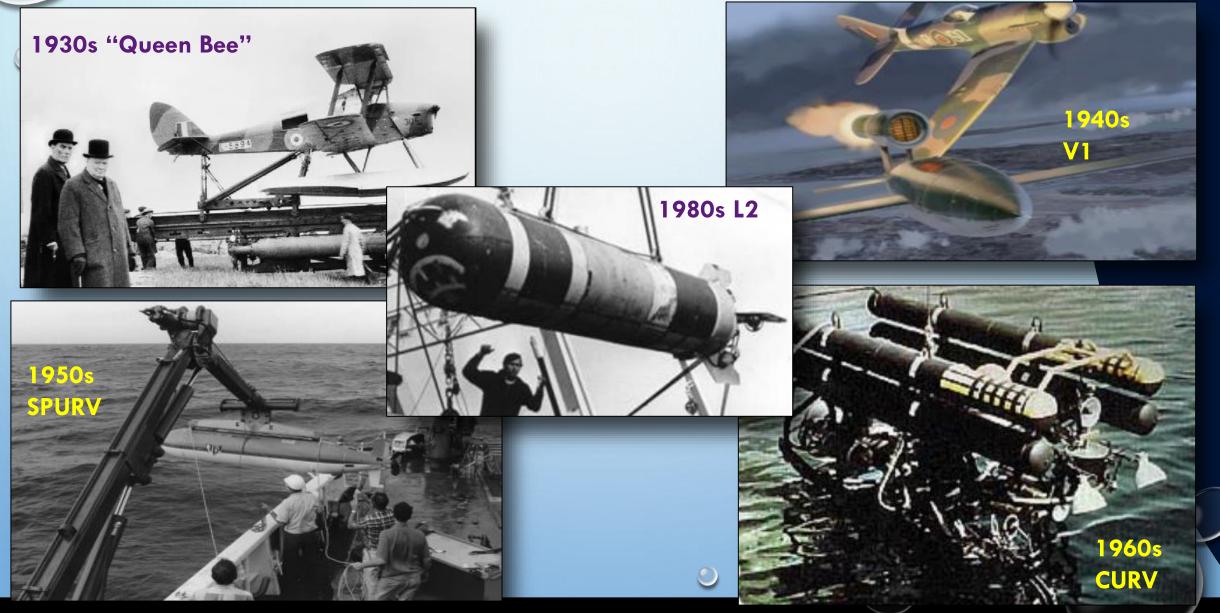
THE RATIONALE FOR UNMANNED

A FORCE MULTIPLIER

- Mass
 - Persistence
 - Safety
 - Innovation
 - Cost

THE RATIONALE FOR UNMANNED

A FORCE MULTIPLIER


- Mass
 - Persistence
 - Safety
 - Innovation

- Cost ?
- Vulnerability
- Integration
- Interoperability

Unmanned - Not New

What makes it so difficult? What's Missing?

- Technology Development (AI / Power / Data Analysis / Bandwidth / DDE)
- Platform Integration
- C2 Integration
- C4 Data Flow & Integration
- Domain Integration
- Interoperability
- Interchangeability

MUS Integration into Operations

Unique Challenges for Force Design and Integration (FDI)

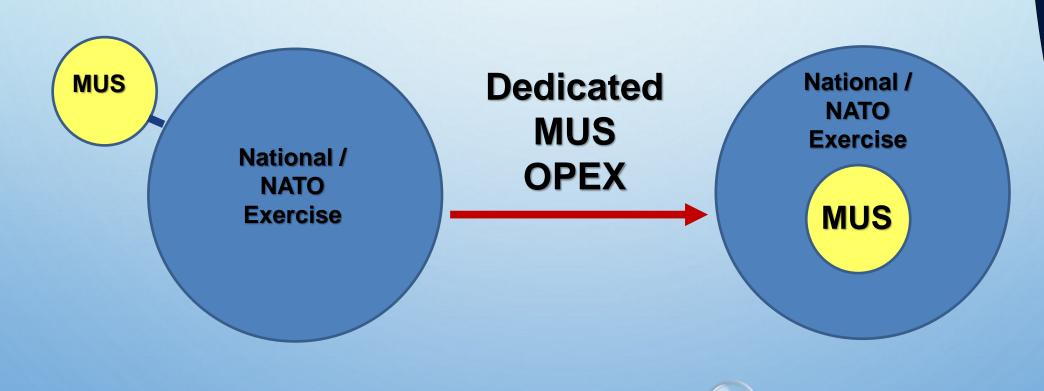
- Transitioning stand alone C2 nodes and data dissemination to an integrated approach
 - Vertically across domains
 - Horizontally across Allies (Interoperability and interchangeability)
- MUS not currently routinely embarked in Operational Warships
 - Accreditation of MUS integratrion into Secret High Combat Management Systems is difficult
 - Transition requires either bespoke trials Combat Management Systems or specific platforms with levels of accreditation for specific MUS platforms and integrator interfaces.
 - C2 and data sharing integrators require complex interfaces with CMS systems.
 - Legacy ICS systems do not support MUS network bearers.
 - Bespoke communications and safety nets often commercial in nature often needed
 - Integration into operational units requires long lead times
- Complex Air and Waterspace management and regulatory landscape

MUS Integration into Operations

Unique Challenges for Force Design and Integration (FDI)

Bridging the "Valley of Death" (Bringing MUS into the Operational Environment)

Getting the Scientist out of the Ops Room! - MUS systems into the hands of the warfighter



Unique Challenges for Force Design and Integration (FDI)

Trust in MUS

OPEX

An Exponential Accelerator for:

- Proving Technology
- Innovative Ideas
- Capability Development
- Operational Testing
- Concept Development
- Developing Doctrine & TTPS
- Driving Interoperability and Interchangeability

"It is no good just examining technology, you have to put things in the water and run them against an operational problem set" Mr Michael Stewart

Head US Navy Unmanned Task Force / Chair NATO Naval Armaments Group

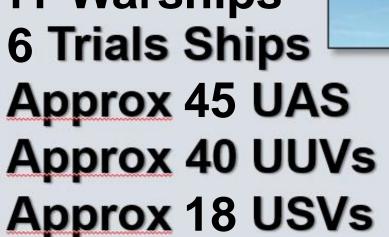
REPMUS 22

Robotic Experimentation and Prototyping augmented by Maritime Unmanned Systems

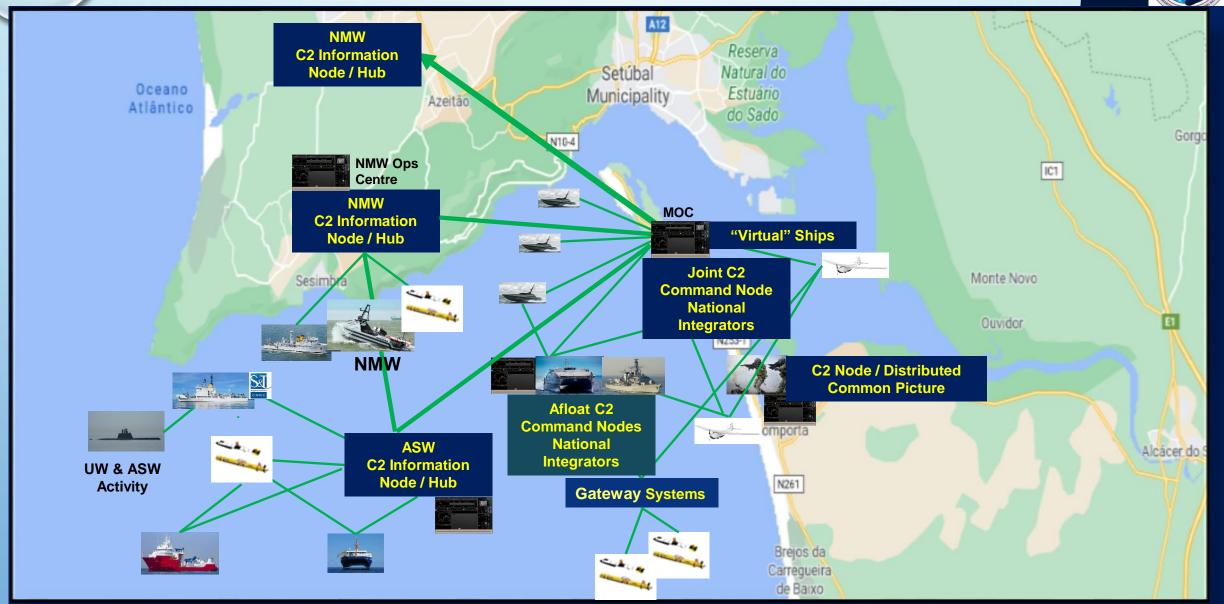
Portuguese Exercise – annual – Troia peninsular / Sesimbra Portugal

NATO Headmark - Day 0 Integration

REPMUS 22 Scope



MARITIME UNMANNED SYSTEMS INITIATIVE



REPMUS Overarching NATO Goals;

- Acceleration of Allied MUS development programs.
- To experiment with new and emerging technology in the field of MUS (including sensors, C3, autonomy AI and others) by testing and evaluating them in live scenarios.
- To develop, experimentation and refining MUS platform, systems and enablers concepts of operation.
- To enable through trials testing and experimentation, interoperability and standardization between Allied MUS systems and between them and manned assets.
- To develop the technological exploitation of MUS capabilities to fulfil the NATO maritime capability gaps, aligned with the NATO Defence Planning Process (NDPP) capability targets.

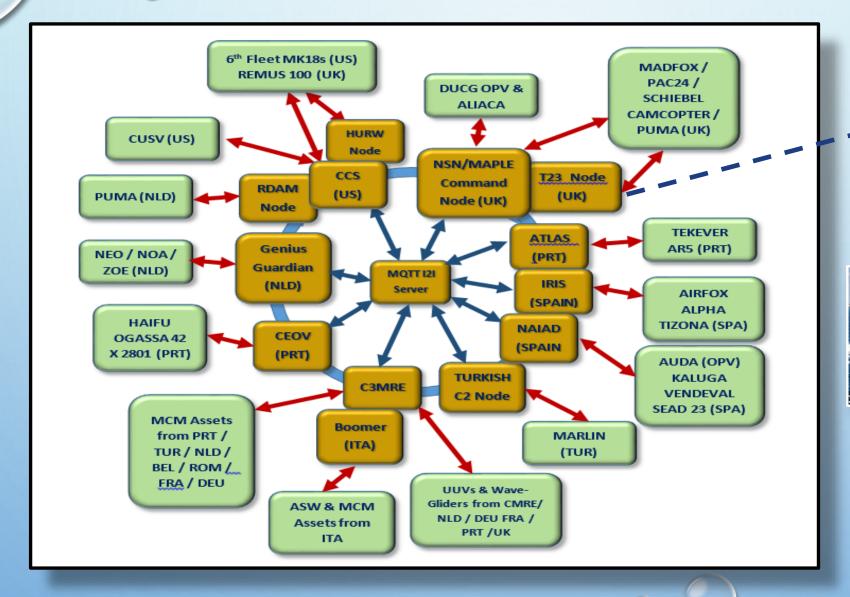
REPMUS 22 C4 Laydown

REPMUS Activity

- **•121**
- NMW
- ASW
- REA

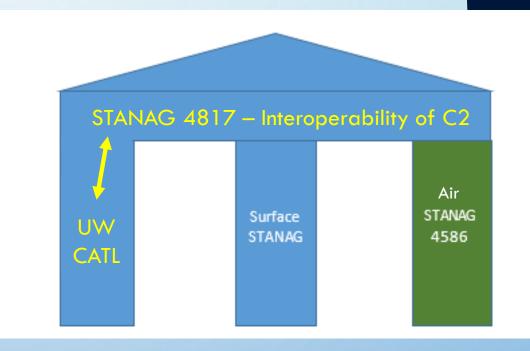
- Develop MUS technical capabilities to support Allied Warfighting Concepts in a collaborative environment sharing info and best practice and stressing systems.
- Use framework vignettes based on warfighting concepts to establish C2 Interoperability to Interchangeability goals and objectives across a range of allied assets and across domains.
- Establish a Common Operating Picture with Complete Blue and Red COI tracking of ALL REPMUS assets.

REPMUS 121 - Vignettes


Demonstrate Allied collaborative use of MUS in the following:

- Specific ISR collect
- Extending maritime organic ISR / MSA reach
- Detect and Intercept Contacts of Interest
- Force protection of High Value Units
- Intercept and engage asymmetric threats (Lethal & Non Lethal)
- Preparation of amphibious battlespace
- Support to amphibious operations
- Anti Submarine Warfare

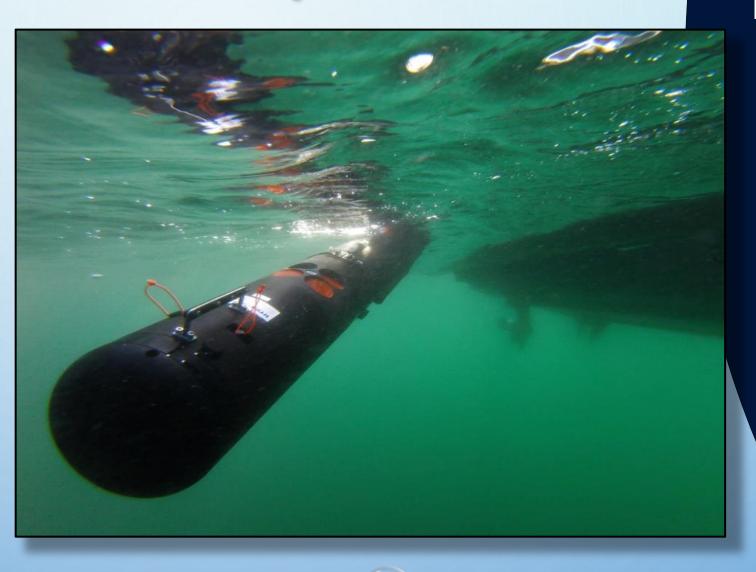
REPMUS 121 – Connectivity Achieved



			121 Mission Types				
Nation	Asset type (UAV,	Asset Name	Patrol	Shadow	Inspection	Cumunu	
UK	USV, UUV, UGV)		Patroi	Shadow	inspection	Survey	
UK	USV	APAC24 (BAE) MADFOX	γ		Υ		
UK	UAV RWUAS	Schiebel S100	Ť	У	-		
					У	У	
US	USV	CUSV	У	У	У		
US	UUV	REMUS 600 MK18				У	
US	UUV	REMUS 300 Lionfish				у	
NL	UAV Octocopter	Acecore NEO					
NL	UAV Octocopter	Acecore NOA			Voice / Mumble ONLY		
NL	UAV Quadcopter	Acecore ZOE					
PT	UAV FW	Tekever AR5					
PT	UAV	UAVision Ogassa					
PT	UAV	UAVision Spyro					
PT	USV	X2801					
ES	UAV FW	M5D AirFox	У		У	У	
ES	UAV RWUAS	Alpha	У		У	у	
ES	UAV FW	Tizona (swarm)	у		У	У	
ES	USV	KALUGA					
ES	USV	SEAD 23	Arriving for Dynamic Messenger				
ES	USV	VENDAVAL					
TR	USV	RD09 Marlin Sefine	у	У	У	у	
FR	UAV	ALIACA					

REPMUS I2I – Mission Planning and Tasking Message compatibility

MUS Interoperability "Temple"



Activity

• |2|

- NIMW
- ASW
- REA

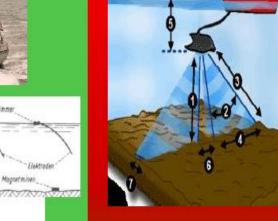
NMW Objectives

The Gland Children

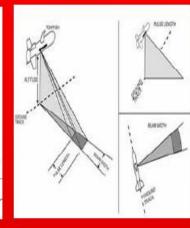
- Contribute to enhancement of planning and evaluation of MUS in NMW
- Contribute to development of NATO CONOPS for evolving and disruptive technology for NMW system of Systems
- Contribute to the integration of new MUS into the tactical C2 structure
- Contribute to algorithms to improve detection and classification process in NMW mine hunting with side looking sonars, including derivation of 3D object representation.

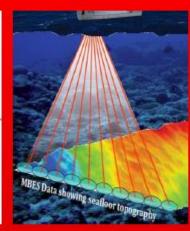
MCM Interoperability/Concept developme

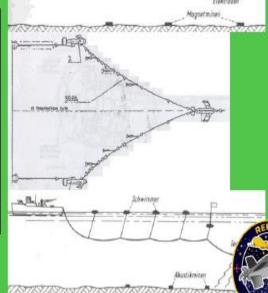
Minehunting

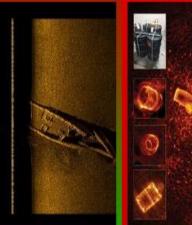

Side Scan Sonar

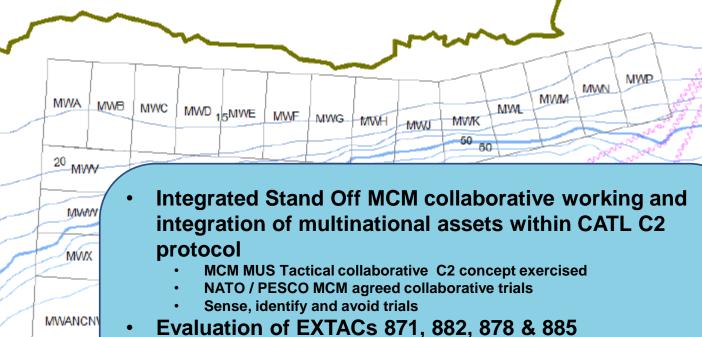
Synthetic Aperture Interferometric Sonar


Side Scan


Multi Beam Sonar






MCM Ops

Exercise Mines

- MANTA
- ROCKAN
- Mk 36
- Cylindrical shape
- Moored mines
- Sonar reference targets

Data Fusion Cell

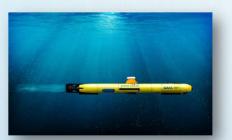
MWANCSV

Informed future Standardization

Close cooperation with Industry

counter measure tool for data Exchange and exploitation)

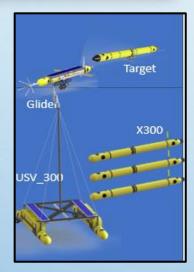
IQUA, RTSYS, ECA, Gavia, Thales, Seebyte


Progressed data handling / management issues

Evaluation of Lime 771 MCM (Light and Interoperable naval Mine

Activity

- -121
- NMW



ASW

REA

ASW ASSETS AT REPMUS/DYMS22

- Italy
- Netherlands
- Portugal
- Turkey
- UK
- US
- CMRE

- Bottom nodes
 - NLDs and CMRE
- UUVs 7
 - XLUUV
 - IT UUV x 3
 - IT / CMRE Gliders
 - CMRE 2 x OEX UUV
- USV 4
 - CUSV
 - CMRE Wave Gliders
 - IT USV x I
 - MARLIN
- · UAS I
 - Thales Schiebel/Sonobuoys
- Targets 3
 - SEMA, GAVIA, SPARTA

REPMUS/DYMS 22 - ASW & UW OBJECTIVES

- Collect Passive and Active sonar data of representative target and evaluate sensor performance of unmanned ASW sensors
- Assess networked sensors ability to create effective surveillance zone
- Demonstrate C2 of unmanned systems and management of autonomy levels
- Demonstrate digital 2 way submarine / surface communications
- Develop AUWB-MN requirments

ASW ACHIEVEMENTS

- Detections and Contacts Real time detections fed to MOC via C3MRE
- Full tactical picture developed tracks and contacts
- UW Seabed Network Nodes (CMRE / NLDs)
- CUSV/TRAPS deployment with passive and active sonar
- Marlin USV Sonobuoy Detection and Relay
- Schiebel Comms Relay from sonobuoy to MOC
- XLUUV Deployment of Sensor suite
- AUWB-MN SOR developed

Activity

- |2|
- NMW
- ASW
- REA

REPMUS22 - REA WG

NDL NAVY

MGEOMETOC COE

CMRE

FRA NAVY

ALSEAMAR

ITA NAVY

GRAALTECH

PRT NAVY

UAVISION

FEUP

ROU NAVY

SEADRONE

ESP NAVY

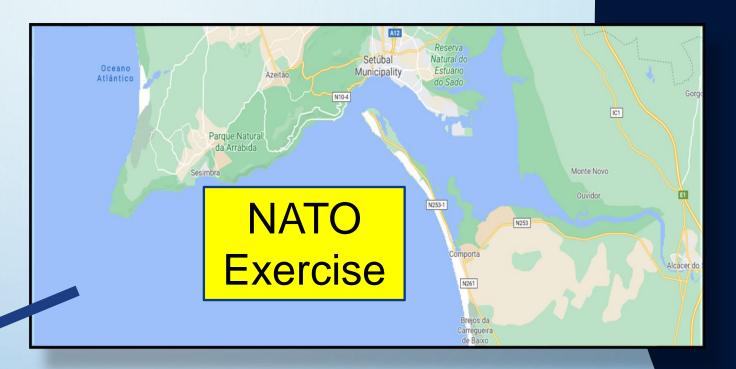
TECNOVERITAS

ROYAL NAVY

CEIIA

INESCTEC

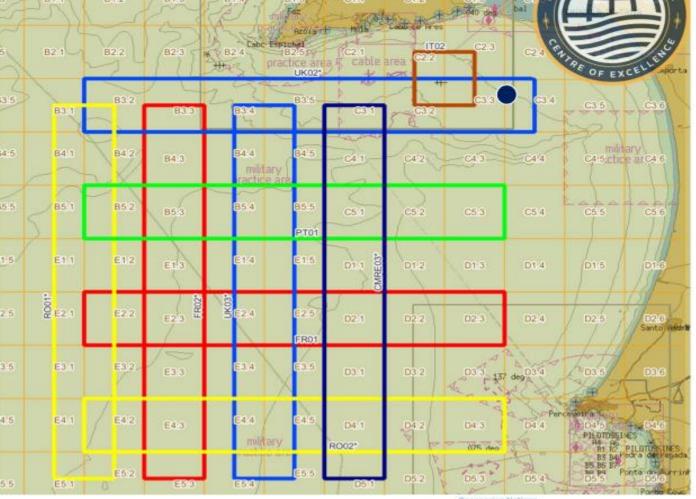
TELEDYNE


MTS

TRUST

MUS in a "safe" place away from the "real" work

REA UXVs

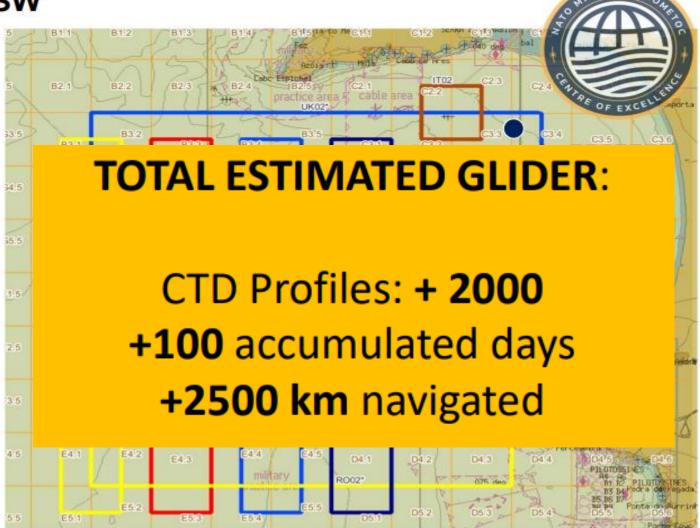


Vignette 7.1 REA – Supporting ASW

Oceanographic survey

- 2x POR Gliders
- 2x FRA Gliders;
- 1x ROM Glider;
- 1x GBR Glider;
- 1x CMRE Glider;
- 1x ITA UUV;
- 1x CMRE Wire walker;

REA

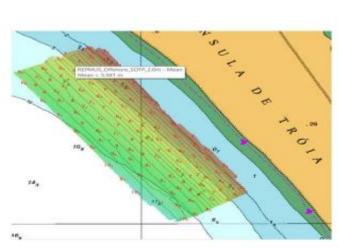


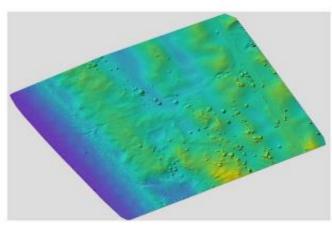
Vignette 7.1 REA – Supporting ASW

Oceanographic survey

- 2x POR Gliders
- 2x FRA Gliders;
- 1x ROM Glider;
- 1x GBR Glider;
- 1x CMRE Glider;
- 1x ITA UUV;
- 1x CMRE Wire walker;

REA A





REA

Vignette 7.2 REA – Supporting AMPHIBOPS

REA 88 0 0 200 m 500 ft 38.42173 : -8.81829

MRCC Support to Killer Whale Attack

REPMUS 23 Timeline

04 th - 09 th Sep 2023	REPMUS 23 Week 1 - Set Up and Integration Week
08 th Sep 2023 (TBC)	REPMUS Pre-Sail Conference(PSC)
11 th - 16 th Sep 2023	REPMUS 23 Week 2 — Live Serials IAW the SOE
17 th – 21 st Sep 2023	REPMUS 23 Week 3 — Live Serials IAW the SOE in conjunction with DYMS set up week
22 nd Sep 2022	Combined REPMUS & DYMS Distinguished Visitor (DV) days

REPMUS 23 NATO Thematic Areas

- Interoperability to Interchangeability and the development of associated standards (STANAG 4817 (I2I) / NATO CATL).
- Underwater Operations, including ASW & UW communications.
- Oceanographic support including Rapid Environmental Assessment (REA).
- Stand-off Naval Mine Warfare.
- Seabed Warfare.
- Joint Common Operational Situation Awareness and C2.

Questions

