HII Unmanned Systems UUV Interoperability and Cooperation

Achieving true inter-navy asset sharing and mission delivery

Unmanned Systems

World-leading autonomy and multi-domain autonomous systems manufacturer for defense, research and commercial applications.

Capabilities

- Unmanned Underwater Vehicles
- Design, Development,
 Production & Sustainment
- Advanced Autonomy Solutions

- Unmanned Surface Vessel Autonomy
- Engineering, Manufacturing & Support Services

Notable Programs

- 22 years of supply of REMUS UUVs (REMUS 100, REMUS 300, REMUS 600, REMUS 6000)
- U.S. Navy MK18 UUV and LBS-AUV
- USN Lionfish small UUV
 replacement PoR

- Royal Navy Hunt+ upgrade for the UUV requirement
- Mainstay of many of the worlds Navies' UUV needs

From Autonomy – Interoperable Autonomy

- True autonomous systems have now been around for more than a generation: REMUS 1998
- "Trusted Autonomy" is more than a buzz word today: UAVs, USVs, UUVs, cars, trains, machines across defense, oil & gas, manufacture, mining, construction, travel and other industries all utilize and have begun to rely on autonomous capabilities
- Application of AI & machine learning is now widespread

Can my autonomy play with your autonomy?

- Different vehicles
- Different payloads
- Different mission software
- Different sensors
- Different "levels of autonomy"

The Use of Open Architecture UUVs & Mission Management Systems

- Open architecture allows easier integration of third-party payloads and software
- Allows for a common systems with the right tool for the right mission
- Common modularity across platforms
- Multi-mission flexible platforms with rapid payload replacement
- End user-developed custom payloads for classified operations
- Energy module configuration to meet mission profile
- Flexible launch and recovery options

Key Essential Characteristics

What do interoperable systems look like?

- Common governance
- Common design architecture
- Open audit and assessment of systems for compliance to agreed standards
- Cross domain (surface & underwater (& air)) operation

Easier said than done?

Need to avoid "vendor lock"

- Avoid reliance on single manufacturer proprietary autonomy sw / mission management systems
- Need ability for autonomous platforms to allow both "front" and "back seat" driving by different autonomy softwares to achieve optimum mission goals using shared systems
- Requires portability of capabilities across platforms
 - Requires willingness by manufacturers to modify existing hardware & software
 - Puts risk on manufacturers IP and incurs costs
- Requires lead by governments using international collaboration for funded development of autonomy structures: MAPLE is a good example

Cross Allied Cooperation within UUV Missions

REMUS Military Customer Base

Include but not exclusive:

- Royal Norwegian Navy
- Finnish Navy
- Swedish Navy
- South African Navy
- Brazilian Navy
- Croatian Navy
- Irish Navy
- Bulgarian Navy
- Thailand Navy
- Canadian Navy
- Royal Australian Navy
- United States Navy
- Japanese Navy

- Singapore Navy
- Royal New Zealand Navy
- Ukraine Navy
- Oman Navy
- German Navy
- Royal Netherlands Navy
- UK Ministry of Defence
- NATO CMRE
- Belgian Defence
- Italian Navy
- Estonian Navy
- Romanian Navy
- Latvian Navy

Collaborative UUV missions – now a real fact

- The US Navy (USN), Royal Navy (RN) and Royal Netherlands Navy (RNLN) successfully executed a multi-national REMUS / SeeByte Neptune autonomy mission to conduct in-stride SCM and dynamic RI on real-time ATR detected targets as a collaborative squad at REPMUS 23
- This is the first time "operational" units from multiple nations have executed a collaborative in-stride Search-Classify-Map (SCM) and dynamic Reacquisition-Identification (RI) autonomy mission.
- Uncrewed maritime systems used: US : Neptune enabled MK18 MOD2 UK : Neptune enabled REMUS 100 (Marine Sonics SSS) Netherlands : Neptune enabled REMUS 100 (Kraken SAS)

Common Security for Common Platforms

- The use of multiple autonomous assets owned and operated by multiple partnered forces gives rise to the need for common security standards and protocols to protect mission & sensor data from falling into enemy hands or allowing enemy interdiction of autonomous assets on mission.
- All data stored on the asset (sensor data and vehicle mission data) needs encryption - DATA AT REST
- Likewise, any command and control data (RF, WIFI, Satellite & Acoustic) needs the ability to be encrypted – DATA IN TRANSIT
- Historically, partnered forces may have selected different encryption protocols and systems to provide this capability.

HII now provide the capability to provide REMUS to allied navies with common encryption systems.

In latest generation of all REMUS vehicles

- Now fully modular for batteries and payloads
- Open software and hardware architecture
- Cybersecurity
- Hardware and software developer kits

Cross platform / cross navy encryption of data

- HII REMUS vehicles can support full cyber compliance:
- Full encryption of data "in-transit" & "at rest"
 - All C2 commands acoustic, RF etc are encrypted ("In-transit" data)
 - All vehicle mission data is encrypted
 - All acquired sensor data is encrypted ("at-rest" data)
- Encryption of data "at-rest" only
 - Subject to USN to Gov approval, partner nations can access this same encryption

Huntington Ingalls Industries Inc. Copyright 2024

REMUS 620 – internal payload bay #2 for encryption module

Torpedo Tube L&R of REMUS 600 UUV

- Dec 2023 the crew of the USS Delaware (SSN 791) completed the first end-toend submarine torpedo tube launch and recovery of a REMUS medium unmanned underwater vehicle (UUV).
- "The Yellow Moray system will provide the U.S. submarine force with additional mission capability, enhancing what the U.S. Navy's submarines can provide"
- Unaided, end to end torpedo tube launch and recovery is a critical enabling technology for achieving routine deployment of UUVs from submarines. The possibilities are endless!
- This success also highlights the versatility of the modular, open architecture <u>HII</u> REMUS UUV platform.

Odyssey™

Advanced Autonomy Solutions

Transform any vehicle into an intelligent robotic platform.

Delivered from a variety of vehicle, module and algorithm-level implementations across platforms, sensors, payloads and missions, Odyssey[™] enables multi-vehicle collaborative autonomy, sensor fusion and advanced perception.

Advanced, intelligent autonomy solutions for platforms in any domain.

Odyssey Teams Multi-vehicle, collaborative autonomy

Odyssey Vision Perception and sensor fusion integration

Odyssey Health Advanced autonomous health monitoring

Odyssey Mission Intuitive command and control interface

Odyssey Commander Enhanced mission manager for complex operations

Odyssey Bridge Safe navigation on manned platforms

44 ADVANCED AUTONOMY SOLUTIONS

Applications for advanced behaviors and complex, collaborative, cross-domain operations

Odyssey Teams

Multi-vehicle, collaborative autonomy

- Shared situational awareness across platforms
- Simultaneous, multiple platform control
- Cross-domain collaboration
- Collaborative task allocation, route planning, decisionmaking
- Elastic self-healing to manage individual platform loss
- Swarm operations

Odyssey Vision

Perception and sensor fusion integration

- Tailored sensor suite
- Fused perception across variety of sensors and payloads
- Enhanced situational awareness, dynamic target detection, obstacle avoidance, and optimal navigation

Odyssey Health

Advanced autonomous health monitoring

- Summary view of platform health status
- Resource usage prioritization and autonomously redistributed tasks to maximize performance
- Component degradation predictions and preventive maintenance recommendations

Odyssey Mission

Intuitive command and control interface

- Advanced, intuitive user interface
- Sophisticated mission planning, monitoring, and post mission planning
- Simultaneous multi-vehicle control
- Cloud or Server based

Odyssey Commander

Enhanced mission manager for complex operations

- Mission, progress, and platform status monitoring
- Adaptive resource management
- Priority-based in-stride mission planning and adjustments
- Autonomous transmission of execution commands to other autonomy modules and platforms

Odyssey Bridge

Safe navigation on manned platforms

- Enhanced situational awareness and decision-making
- Improved human cognitive performance
- Seamlessly balanced efficient transits, hazard and collision avoidance, and time on target

Odyssey USV Software and Hardware

Odyssey USV Autonomy Odyssey Vision **USV Vehicle Operations** • Sensor interfaces and data processing Sensor Fusion • Interfaces for Engines, Track Correlation Situational Auxiliaries, Power, Remote **GPS Saab** Awareness Odyssey MGL-5 Control, E-Stop IMU? Odyssey Commander Autonomous Mission IO NXT FU Management Radar Furuno ◄► Mission execution and DRS4D-NXT Rugged Router schedulina **USV Sensors and PNT** Single-vessel behaviors **Network Switch** Getac Laptop Cisco IE-3400 (Odyssey Mission) Kongsberg Kongsberg **MBR 144** Odvssev Teams **MBR 179** Interfaces for radar, AIS, PNT, \leftrightarrow AIS Saab R5 Multi-vehicle collaborative weather, EO/IR autonomy and behaviors Kvaser CAN Serial to Ethernet to Ethernet Ethernet Serial ODYSSEY . CAN Odyssey Health **TeleRadio Tiger G2** G2 Receiver RF E-Stop Controller Health monitoring Fault detection & Mitigation Depth **USV** Payload Airma TM-260 Advanced diagnostics and prognostics CZone COI Propulsion Interfaces for payloads which Power Interface via HJ XCIU \leftarrow can also be linked to Odyssey **Odyssey Mission** Mission C2 Station • Pre-Mission checkout & ←> setup Mission rehearsal Mission planning &

monitoringPost Mission Analysis

H ODYSSEY MISSION		<u>≜</u> ≔ ⊻	0 = ~ 🗘 🥐 🗰
Home > Mission Monitor >> R300-Mic	Live Vehicle		R300-MICROZED: NAVIGATE R300-VM: NAVIGATE
VEHICLE MISSION ALERTS COMMANDS	Heath and	36.9841, -76.1923	
Vitals Temperature Pressure 20.3 °C 799 pa	Mission Status	1. Wait Run 2. Get GPS Fix 3. Wait Run R3000-Micro2ed	Multi-Vehicle
Voltage Amperage Watts 26.20 V 4.00 a -1.00 w GFI CPU Utilization 0.1 7.00 %	1. Wait Run 2. Get GPS Fix 3.0 kn / 180.0 ° / 15.0 m	4.0 kn / 228.0 ° / 25.4 m Navigate	Monitoring
96.00 % false 12:36:49 AM EST Annunciators	Navigate 94. Navigate	6. Reacquire	
Attitude_Sensors Battery Bus Bottom Lock Compass Crypto Current DSP Depth_Sensor Disk_Space Energy GFI GPS Fix GPS Status HPP NodeMor HPP-2GR	4. Navigate	• 7. Circle	
HPP-GFS HPP-MONITOR HPP-MSTL Hardware Housing Indium Leak_Continuity Leak_Detection Modem	Navigate Rows		8. Navigate
Payload Pitch_Motor RECON REMUS Nav Ranger_Ping Rudder_Motor Scuttle Strobe Supervisor			
Temp. Thruster_Motor USBL Nav VCR Voltage 200 m -75.1944 -75.1944	-76.1917 -76.1889 -76.1861 -76.1833	-76.1806 -76.1778 -76.1750 R300-MicroZed: 12:36:49	-76.1722 -76.1694 -76.1667 -76.1639 -76.1611 AM EST R300-VM: 12:36:49 AM EST User Time: 12:36:49 AM E

Mission Monitor

Any Questions ?

HII.COM

