FACULTY OF ENGINEERING

NAVAL ARCHITECTURE AND MARINE ENGINEERING TEAM

Will Robots Save The Ship?

Options for Lean Crewed and Autonomous Ships Naval Damage Control Conference 2024

David Manley, RCNC Professor of Naval Architecture (UCL) Head of Specialism, Platform Survivability (DE&S / SDA) <u>david.manley@ucl.ac.uk</u> <u>david.manley641@mod.gov.uk</u>

Presentation Outline

- Introduction
- Developing Trends in Platform Design
- The Challenge of Lean Crewing and Autonomous Ships
- Potential Mitigations
- Autonomous and Robotic DCFF Systems
- Conclusions

2. All information presented here is from open sources in order to promote discussion and debate

^{1.} The views expressed here are my own and do not necessarily reflect those of the UK MOD or UCL

The Developing Naval Environment

- Lean crews
- Autonomous ships
- Increasing threat
- More diverse threat (maybe)
- Demands from our seniors for lean-crewed ships – but also cheaper – and more lethal.
- Maybe not a situation where "pick any two from three" is applicable

Lean/Autonomous Shipping

- Reduced personnel available for DCFF
- None in autonomous shipping
- Potential for the loss of significant fleetwide capability if craft are lost
- In warships, potentially causing warfighting activity to be reduced or stopped whilst an incident is resolved
- What can we do?

Mitigations

- Fixed systems
- Inherent Protection
- Disposable Platforms
- Autonomous and Robotic Systems
- (other mitigations are available)

Fixed Systems

- Watermist, dewatering systems
- Intelligent Fluid Systems
- Well understood
- Developing systems (e.g. IDACS)

Fixed Systems

- Will they work when you need them?
- Will they work too well?

Inherent / Augmented Protection

- Blast / fragment resistant structure
- Self healing structure
- Intumescent coatings, swelling fibres

Disposable Platforms

- Have been considered several times
- Never really caught on
- How costly before "disposable" becomes unpalatable?
- What about the crew?

Autonomous and Robotic Systems

•

10

DC Robots? That's just Science Fiction!

- Maybe, maybe not
- Arguments against expensive, not proven, fragile, will make mistakes
- The RN has invested over £200m in offboard MCM
- A key driver has been reducing the risk to personnel
- "Taking the man out of the minefield"
- If we can do that for MCM, why can't we do the same for fires, floods and other damage control activities?
- Is our current approach ALARP?

Is Development Practicable?

- Yes, its "just" a question of money
- Mobility / Stability
- Current bipedal robots have good resistance to perturbations, impacts, uneven surfaces
- Robots don't need to be bipedial, lower CofG.
 Additional arms for bracing
- Identifying damage and applying DC techniques
- An ideal case for AI/ML and a graduated implementation
- Remote control
- Command approval
- Autonomous

**Yusuf, Amani, Use of autonomous systems to reduce personnel risk in shipboard damage control, UCL, 2023

Is Development Practicable?

- Yes, its "just" a question of money
- Mobility / Stability
- Current bipedal robots have good resistance to perturbations, impacts, uneven surfaces
- Robots don't need to be bipedial, lower CofG. Additional arms for bracing
- Identifying damage and applying DC techniques
- An ideal case for AI/ML and a graduated implementation
- Remote control
- Command approval
- Autonomous

**Yusuf, Amani, Use of autonomous systems to reduce personnel risk in shipboard damage control, UCL, 2023

Are They Appearing Elsewhere?

- Yes, its "just" a question of money
- Mobility / Stability
- Current bipedal robots have good resistance to perturbations, impacts, uneven surfaces
- Robots don't need to be bipedial, lower CofG.
 Additional arms for bracing
- Identifying damage and applying DC techniques
- An ideal case for AI/ML and a graduated implementation
- Remote control
- Command approval
- Autonomous

THOR-OP autonomous firefighting robot. Robot image: Virginia Tech

Conclusions

- There are a range of options to enhance the ability of lean crewed and autonomous ships to recover
- These may, in weapon-induced cases, themselves become ineffective due to damage
- Development in robotics present an opportunity to develop increasing DC capability to assist, augment and, in time, replace humans in dangerous damage control scenarios
- We just need to believe.....

Any questions? Why didn't anyone tell me about this? the

It was on the syllabus.

PROFESSOR

