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Fibre-reinforced polymer (FRP) matrix composites

* widely used in large marine structures

* wind turbines where blade lengths are now over 110 m.

* materials of choice for small vessels

* due to ease of manufacture, high hull girder stiffness, buckling resistance,
corrosion resistance and underwater shock resistance.
RNLI inshore composite lifeboats have increased service to over 60+ years

 Ships over 100 m are still built using traditional steel and/or aluminium
so far not FRP.

* Composite ship lengths have increased over the past 50 years,
but fundamental technical challenges remain for 100 m composite ships.

* Preliminary studies suggest a possible:
* 30% saving in structural weight,
* 7-21% reduction in total load displacement,

* 15% cost saving.

* However, economic considerations, design codes, fire safety, manufacturing limits, and end of life
scenarios need to be addressed before a 100 m ship is built.



Fibre-reinforced polymer (FRP) composites
widely used in ships & marine structures:

Advantages —
* low densities .. lighter hulls

* excellent modulus- and strength-to-weight
ratios

* corrosion resistance
* low maintenance requirements

* improved fuel consumption
and/or increased cargo capacity.
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Fibre-reinforced polymer (FRP) composites
widely used in ships & marine structures

Limitations:
* high material, mould tool and labour costs
 complex design processes: unclear or poor guidance and legislation

* safety,
* end-of-life procedures.
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Table 1. Intermarine Mine-Counter Measures Vessels (MCMYV ) supplied to foreign navies.

Navy Vessel Class Vessels Built/Deliver
Royal Malaysian Navy Mahamiru 4 1985
Nigerian Navy Ouhe 2 1987-1999
United States Navy Osprey 12 1991-1998
Royal Australian Navy Huon minehunter coastal (MHC) 6 1994-2003
Royal Thai Navy Lat-Ya 2 1994
s Witon  Londsortclass visby Clas

75 m, 650 t
w composite sandwich

Hunt Class * thermal insulation lowers infrared signature
o0m, 752t and increases survivability in fire. e e
th . * non-magnetic, lower magnetic signature.
e very strong, low mass means a higher top speed, better manoeuvrability
Alexandrit Class . o .
62m, 890t * weighs roughly 50% less than equivalent strength steel.




Resin Infusion at Princess Yachts, Plymouth
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Manufacturing Issues

* bagging processes consolidate laminate
* higher fibre volume fractions
* reduced resin-rich volumes & associated voids
* better working environment than open mould methods
* enclosed temperature-controlled facility

* 62 m long 10 m tall minesweeper hull infusion
e 21 t of resin, 45 t of fabric, 1.5 km spiral feed tube, 85 m x 35 m vacuum bag

* innovative materials and structures:
e carbon fibre composite skinned sandwich construction, + aramid,
* vinylester, epoxy resin, for increased mechanical performance
e consequent improvements in economics and manufacturing processes.

 Composites are more competitive on a volume-for-volume basis
due to their lower density and higher specific properties.



15 May 2014.

Princess Yacht 115 foot 35 m hull
just released from mould
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Fire Safety

—

* Piper Alpha - steel aluminium thermally conductive, heavy, expensive.
* loses approximately 50% of its load-bearing capability at 500°C

* intumescent materials swell when heated:
* increased volume and decreased density.
* key component of passive fire protection

* ProTek withstands a two-hour jet fire @ 0.3 kg/sec gas release.

* topside & subsea applications
* zero corrosion risk + maintenance-free for at least 30 years



Fire (flame, smoke and toxicity/FST) major
design challenge for marine vessels

Fire performance of the FIBRESHIP composite laminates
ranked by decreasing time to ignition (TIG)

Polymer System Supplier T1G (s)
phenolic resin Cellobond ™ J2027X Hexion 101

vinyl ester LEQ system with(out) topcoat Saertex 75 (50)
bio-based epoxy Super Sap” CLR Entropy 61
epoxy resin Prime'™ 27 Gurit 60

epoxy resin SKE1125 with{out) 5Gi 128 intumescent gelcoat Sicomin 52 (53)
wrethane acrylate Crestapol® 1210 Scott Bader +4
methacrylic Elium®™ thermoplastic Arkema 23




Intumescent

* Epoxy-Based Intumescent Coating

* marine industries and chemical manufacturing
due to their hydrocarbon fire protection

* polymer melt should be viscoelastic

e gases released during intumescence process should
remain contained within it, forming a foamed char.

glass fibre is holding char in location. oL Ta®Ue

. o . RN

* ProTek intumescent isolation material Duting heating B0 0
produced by Solent Composite Systems, UK. ®e % ®
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ProTek™ Structure

Back Glass/Epoxy Structural Laminate

Phenolic Insulation Core
Ceramic Insulation Core
Front Glass/Epoxy Structural Laminate

Ablative Coating
White Gelcoat

There are two insulating core
Solent Composite Systems. ProTek Passive Fire & Blast Restraint System.
[Online] [Cited: 20 February 2009.] www.solentcomposites.com/downloads/ProTek.pdf.



ProTek

 Composite damage tolerance
is the solution,
e.g. intumescent and ablative
composite panels (e.g. Protec)
used offshore produce
Fire Protection for up to 2.5 hours
in a hydrocarbon jet fire
with blast protection and
thermal Insulation - 1200°C
without additional thermal insulation

* Photo Protek fastened to a steel plate
after being exposed to heat
for one hour




HMS Wilton

46 m 450 tons GRP
converted to the
Essex Yacht Club HC




Comparative
Life Cycle Inventory data

CO2 Footprint, Primary Production (kgCO2eq/kg)
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LCA comparison of
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End-of-life boats
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Conclusions
* FRP composites have the potential to:
* revolutionize the marine industry
* reduce weight and environmental impacts
» offer improved range, non-magnetic and stealth properties, and

* reduced maintenance requirements.

 further research and development are needed to
overcome the challenges of manufacturing large composite structures
and developing effective end-of-life technologies.

The 100m composite ship - technically feasible:

e economic case linked to life cycle thinking
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 overcautious design pending naval architects/composites designers
having increased confidence.
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