BY SAGEINDUSTRIAL

Advanced Surface and Air Protection

Integrity protection without the use of chemicals or residues

Cooling/Processing areas

Refrigerated Transport

Consumer

AirROS protects the cold chain

Flowers & plants Wine

78% Nitrogen

AIR: THE LARGEST FOOD CONTACT SURFACE

The Air: How it becomes a contaminant vehicle.

The air is NOT a microbial habitat on its own.

The air CARRIES particulate matter which can include bacteria, fungi and viruses.

Yeast and mold spores are **RESISTANT**.

BACTERIAL concentration varies and depends among other factors on the amount of particles in the air.

AIR/ENVIRONMENT QUALITY IN ENCLOSED SPACES

INTERNAL FACTORS

PERSONNEL

RELATIVE HUMIDITY

LEMPERATURE

EXTERNAL FACTORS

WASTE

CONTAMINATION ELEMENTS IN FOOD PROCESSING

Source of contamination	Mechanism of distribution	Risk to product safety
Raw materials (e.g.	Micro-organisms carried on surfaces	Medium to high
outer or raw product)	On fast, slatking as some some all husines	Madiana ta Mak
Personnel	On feet, clothing or poor personal hygiene	Medium to high
Traffic	Trolleys and fork lift truck wheels	Medium to high
Airborne	Fresh air	Medium
	Particles of dust or powder	Medium
	Aerosols from spray, splashes	High
	Pneumatic transport, overpressure, gas blanketing of product	High
Condensation	Contact	High
Surfaces	Surface to surface contact	High
Cleaning operations	Aerosols from hosing, brushing, vacuuming	High
Equipment	Blow lines, exhaust from pneumatic systems and compressed air lines	Medium to high
Buildings	Leaking roofs, badly fitting windows or doors, poor design, construction or maintenance	Medium to high

Source: Guidelines on air handling in the food industry; Trends in Food Science and Technology 17 (2006) 331 - 336

Technology

REACTIVE OXYGEN SPECIES (ROS)

Group of oxygen byproducts that are highly reactive and have strong antimicrobial properties without using chemicals nor affecting the product Destruction/neutralization of pathogens

- ✓ CONTINUOUS SANITATION OF SURFACES AND AIR
- ✓ BACTERIA/MOLD & VIRUS CONTROL
- ✓ ORGANIC CONSISTENT PROCESS

Safe and continuous protection without chemicals or residues

Safe and continuous protection without chemicals or residues

With AirROS

Existing Air (Containing Microorganisms)

AirROS purifier utilizes electricity and creates ROS. The highlyreactive ROS inside the purifier destroys molds, pathogens, and virus' as they pass through.

The sanitized air that comes out of the purifier enters the environment and sanitizes all surfaces it contacts.

0

0

Approved for use in Organic Agriculture

Technology benefits

Simultaneous effect

- Effective control of environmental and surface microorganisms such as *molds, viruses, ethylene* and others in critical areas of processing and handling.
- Broad spectrum of action and rapid reaction against pathogens such as Listeria monocytogenes, Salmonella spp., Escherichia coli
- Does not use nor generates chemicals (clean technology). Safe for people and products.
- Clean and Sustainable Technology.
- Low energy consumption.
- Supplemental unpleasant odor control.

Simultaneous protection to control

MOLD

DEHYDRATION

RIPENING

Consistent with new Food Safety Law FSMA

Facilities required to have Hazard Analysis and Preventive Controls (HAPC)

Comprehensive plan identifying hazards (microbial, biological, others) linking sanitation and GMPs

Preventative control plan to address risks

HAPC must include environmental monitoring, food defense, hygiene training, allergen controls, others

- Requiring any factory, warehouse or importer that manufactures, packs or stores food, to implement and monitor effective measures to prevent bacterial contamination
- The FDA will hold food companies accountable for preventing contamination and preventing food safety incidents

AirROS is a proven technology in alignment with the prevention of environmental contamination and food safety plan enhancement that features a monitoring system with performance tracking capabilities

EQUIPMENT / SYSTEMS

Cold storage

Precoolers

Reinforcing protection in the cold chain

Inactivation of Listeria and Staph with AirROS ROS

MATERIALS AND METHODS

Preparation of Cultures:

Methicillin-resistant Staphylococcus aureus (ATCC # 33591): Acinetobacter baumannii (ATCC # 11171) and Listeria monocytogenes (KSU # 56 and 70) were used for this study. Bacterial species were independently grown in Tryptic Soy Broth (TSB; Difco Laboratories, Detroit, MI) and YM broth (Difco Laboratories, Detroit, MI) respectively to mid-exponential phase followed by a wash and resuspension in 0.1% peptone water (PW). The microbial cultures were combined by specie type to ca. 108 CFU/ml.

Preparation of environmental surfaces:

Environmental surfaces were simulated using coupons made of stainless steel (6.4 x 1.9 cm). Before treatment and inoculation, all coupons were cleaned using Fisherbrand Sparkleen* detergent (pH 9.5 - 10 in solution; Fisher Scientific). Stainless steel coupons were sterilized by autoclaving.

Preparation of Samples and ROS Treatment:

The coupons tested were dipped per microbial inoculum and vortex 15 sec optimizing microbial dispersion. Sterile binder clips were used to hang each coupon from a cooling rack for 1 h until dryness in a laminar flow biohazard air hood. The initial microbial population attached to the stainless steel coupons was in the range of 105 to 106 CFU/ sq. cm. The inoculated stainless steel coupons were transferred to a controlled airflow Biological Safety Cabinet (Nuaire) at 26°C, 46 % relative humidity (ambient conditions), and exposed to ROS produced by the ROS Reaction Chamber for periods of 2, 4, 8 and 24 hours. Inoculated controls were prepared and placed in the test cabinet for 2, 4, 8 and 24 hours without ROS treatment. Ozone levels in the test cabinet were monitored throughout the study (Model 500, Aeroqual, New Zealand).

Sampling:

At the end of the designated holding time, coupons were placed into 30 ml of 0.1% peptone water and vortexed for 30 sec; samples were serially diluted and plated onto Tryptic Soy Agar (TSA; Difco Laboratories, Detroit, Ml) for bacteria recovery. The colony-forming units per square centimeter (CFU/cm2) were estimated after incubating at 35oC for 24h.

Listeria monocytogenes control

SA Figure: Population (log10 CFU/ sq. cm) of Methicillin resistant Staphylococcus aureus on Stainless Steel surfaces observed after 0, 2, 4, 8, and 24 h of exposure to Reactive Oxygen Species produced by ROS Reactor.

LM Figure: Population

Country: United States – Product(s): Vegetables

48

AirROS reduces pathogens on produce surfaces

- Spinach
- Pathogens: Listeria, Salmonella & E.Coli, 90+% reduction in 60 minutes and continuous reduction to 99.99% in less than 24h

Result of ROS treatment on Surface Inoculation Spinach – ½ Pound bundles Graphical representation of Log reduction over time.

Listeria: 99% reduction in 30 minutes and continuous reduction to 99.99% in less than 24h

Reduction of Lm on Yellow Peppers

Inactivation model with ROS in sanitizing Multiple Surface Materials

Objectives:

Show ROS efficacy in reducing pathogens on food contact surfaces

Methods & Results

Treated Container & Non-treated Container Small pieces of each surface material inoculated with SalmonellaTreated for 48 hours Results from the treated materials showed 99+% reduction in 2 hours and 99.99+% in 48 hours

Conclusions: The AirROS treatment can provide a significant benefit to the mitigation of food safety risks due to cross contamination from food contact surfaces even with porous materials.

ROS Treatment of Salmonella on Multiple

AirROS inhibits mold development

Less mold with AirROS

4 days @ 36°F

AirROS significantly reduces mold

CONTROL

Field large scale test

AirROS delays ripening

CONTROL

After 46 days @ 32°F

Tomatoes

AirROS protects the integrity of vegetables

4 days @ 50°F and 17 days @ 63°F

AirROS increases shelf life and reduces losses

Field large scale test

AirROS provides significant value in the integrity and condition of fruits and vegetables

Companies that use <a>in the intermediate in the intermediate intermediate in the intermediate in the intermediate in the intermediate in the intermediate intermediate in the intermediate i

Ph. +64 21 1108527

AirROS Australasia kerry@airros.com

