

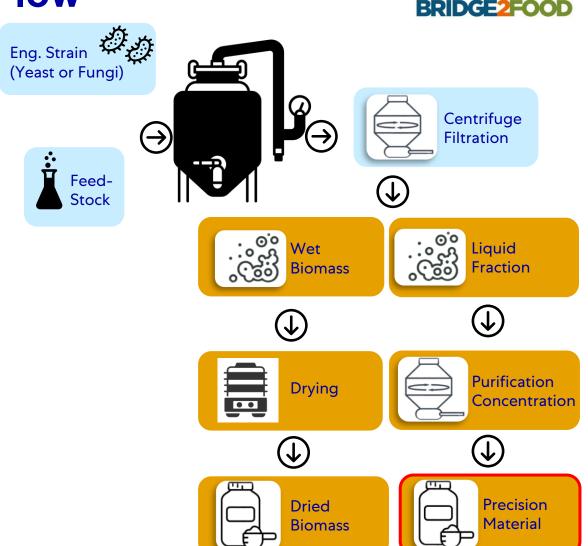
Lecture #5 Precision Fermentation and Cell-Cultivated Proteins

Today's agenda:

- Precision Fermentation Details
- Cell-Cultivated Protein Landscape
- Cell-Cultivated Cultures & Process

Simplified Precision Fermentation Process Flow

 Engineered microorganisms to produce specific functional ingredients in a controlled and efficient manner


Examples of companies within the PF Landscape:

BEZOS CENTER FOR SUSTAINABLE PROTEIN

Fermentation Types and Details

Batch

2-5% Cell Density **20-50** g/L max

0.5-2 g/L/h Total: 1-7 days

Definition:

Feedstock & strain added in fermentation tank – inoculate cells, growth, then <u>all of the</u> tank is harvested

Fed-Batch

2-10% 2
Cell Density

20-100 g/L max

1-3 g/L/h Total: 3-20 days

Definition:

Gas release monitored to determine when additional feedstock should be added. Allows for increased cell density if gas can be stirred in.

Most PF

Continuous

10-20% 100-200 g/L max

2-5 g/L/h

Total: Indefinite at steady state

Definition:

Feedstock added
throughout process AND
waste build-up is
removed at a certain
point.

This allows for increased cell density compared to Fed-Batch.

enabling technology companies assisting

Perfusion

20-30% 200-300 Cell Density g/L max

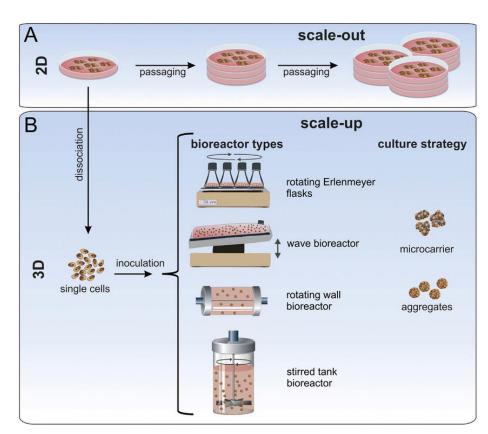
3-10 g/L/h Total: Up to Months

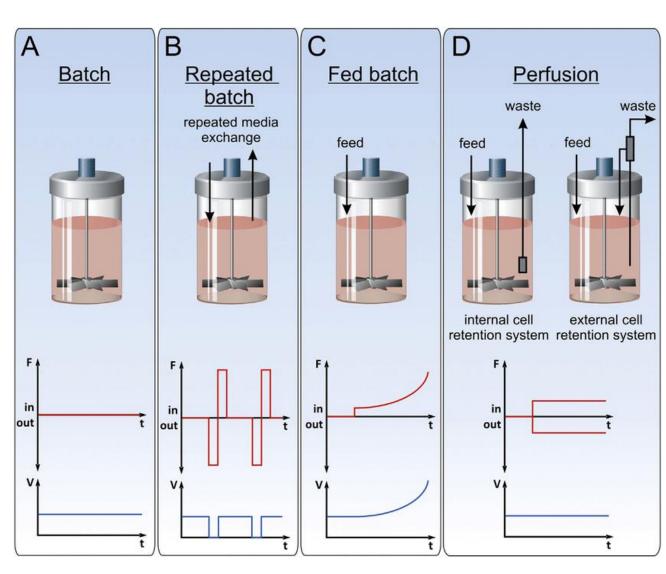
Definition:

Feedstock added
constantly & waste
build-up constantly
removed, creating a
steady state of inputs
and outputs.
Used primarily for slow
growing cells.

All Cell-Cultivated

Efficiency + Complexity and Novelty



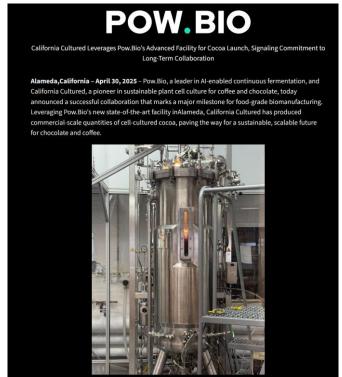


Fermentation Types Visualization

DOI: 10.1016/j.procbio.2016.09.032, Massai, Diana, Zweierdt, Robert

Enabling Technologies for Fermentation – Example #1

POW BIO


Description:

Provides an Al-enabled continuous fermentation platform that dramatically boosts biomanufacturing yields and cuts unit costs by up to 50%.

Key Advantages:

Increases fermentation yields by 2-5x, and cost savings up to 50%. Partnership with California Cultured (cell-cultivated cocoa)

Enabling Technologies for Fermentation – Example #2

Description:

Uses <u>ultrafine bubbles to boost</u> fermentation efficiency.

Key Advantages:

Integrates into fermentation with low CapEx.
It enables 25% faster fermentation cycles and produces cleaner ingredients for texture and sweetness.

OUR ULTRAFINE BUBBLE TECHNOLOGY Boost Fermentation Speed and Yields

Achieve up to 2x higher peak cell biomass in fed batch fermentations. Testing has shown benefits across a number of cell lines including bacteria, yeasts and filamentous fungi for both aerobic and anerobic fermentations.

Shorter Fermentation Time

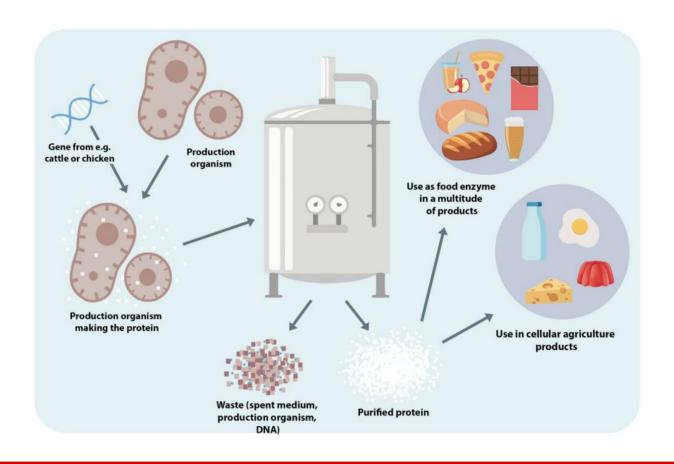
Studies using Hydrosome Labs technology fitted to existing bioreactors resulted in up to a 25% faster time to completion. Save costs through better throughput, with lower energy and labor costs and better capital utilization.

Achieve Significant Increases In Titers

Testing with Hydrosome Labs
technology has shown a direct
correlation between the increase in cell
biomass created and Titer production.
Achieve a significant increase in your
target compounds, while also creating a

Chemical Free, Easily Adapted to Your System

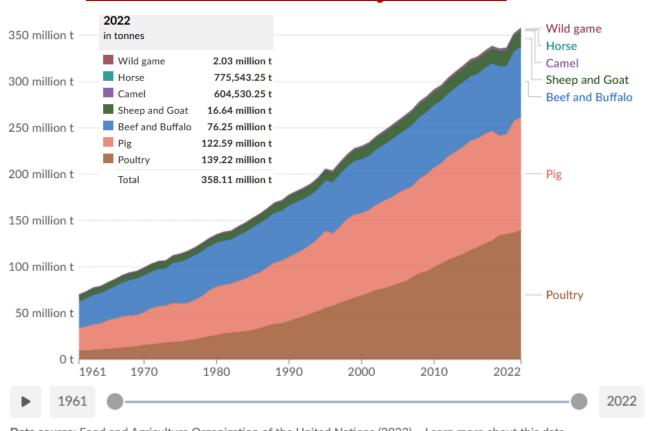
Our process is completely chemical free with minimal energy requirements. Our technology is designed to seamlessly integrate with your existing fermentation equipment. Bioreactors with suboptimal oxygen uptake rates (low OUR) can be easily upgraded, boosting outputs and enhancing performance.


Cell Cultivated Fermentation

This type of PF is more complex, as nature identical cell are grown.

Adds upstream complexity due to cell types having slower growth, higher media requirements, & increased risk of contamination

Why cultivated meat?



Global Meat Production by Livestock

Data source: Food and Agriculture Organization of the United Nations (2023) - Learn more about this data

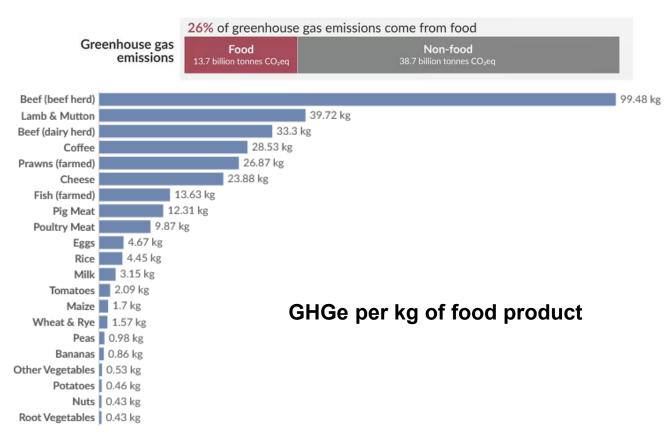
Note: Total meat production includes both commercial and farm slaughter. Data are given in terms of dressed carcass weight, excluding offal and slaughter fats.

OurWorldinData.org/meat-production | CC BY

Food Conversion Efficiency

Pounds of feed to produce 1 pound of animal protein

Why cultivated meat?



Environmental Impacts

• Livestock production uses **70%** of agricultural land but provides only **20%** of calorie intake.

COMPLETE PROTEIN(all 9 essential amino acids present)

Typical Meat = Muscle + Connective Tissue + Fat

Approximate composition:

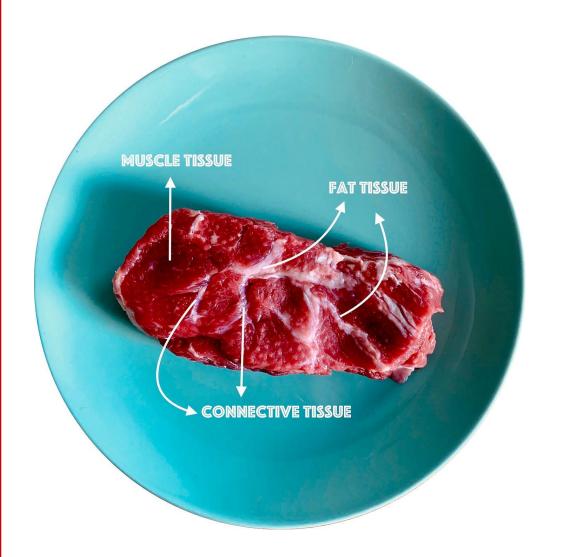
- 70% water
- 20% protein
- 9% fat
- 1% ash

Content (%)	Beef	Poultry			
Moisture	71.38b	75.03ª			
Protein	16.01b	17.35ª			
Fat	7.93ª	5.12°			
Ash	0.79⁵	0.86ª			
a bi managa in angga rawa banging different augustasiat latters are signiferent.					

a-b means in same row bearing different superscript letters are significantly different (P ≤ 0.05). n=9

J.G. Sebranek, CHEMICAL ANALYSIS | Raw Material Composition Analysis, in Encyclopedia of Meat Sciences, Academic Press, 2014, https://doi.org/10.1016/B978-0-12-384731-7.00053-2.

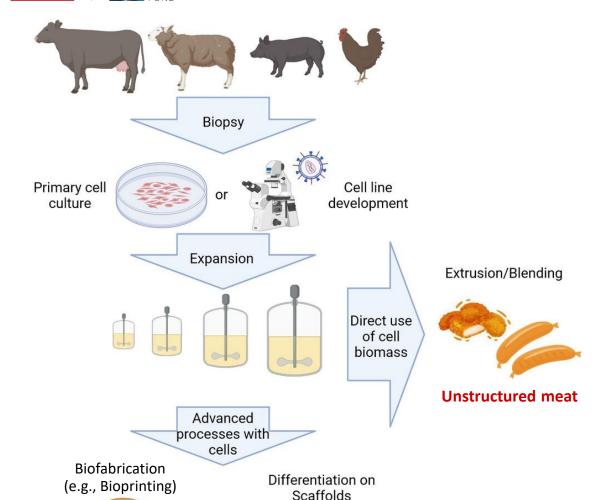
Hammad H, Ma M, Hydamaka A, Elkhedir A, Jin G, et al. 2019. Effect of Freeze and Re-freeze on Chemical Composition of Beef and Poultry Meat at Storage Period 4.5 Months. J Food Process Technol. 10: 791. 10.4172/2157-7110.1000791


Cultivated meat manufacturing

Mimicking animal-derived meat

Meat component	Initial function	Culinary contribution to the final meat	Cultivated meat component
Muscle	Contraction/ movement	Texture, biomass	Muscle cells
Fat	Storage of energy participates in signaling	Contribution of flavor substances, juiciness, texture	Adipocytes
Connective Tissue	Structure, Support, protection	Texture, biomass	Non/Fibroblasts
ECM	Structure, tissue homeostasis/cell- matrix interactions	Texture, juiciness	Natural and synthetic Scaffolds
Blood vessels	Oxygen and nutrients supply, metabolite removal	Color, flavor	Recombinant heme proteins/food dye/ beet juice

BEZOS CENTER FOR SUSTAINABLE PROTEIN


Cultivated meat manufacturing

Cells

- Source
- Storage
- Optimization for large-scale
- Non-gm immortalization
- Chemically induced pluripotency

Expansion

- Bioreactors
- On-line monitoring
- Harvesting
- Degradable/ Edible microcarriers

Scaffolds

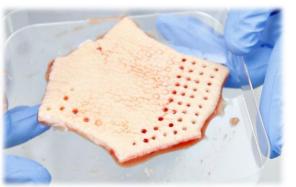
- Microcarriers
- Porosity
- Vascularization
- Biodegradable materials
- Tunable properties

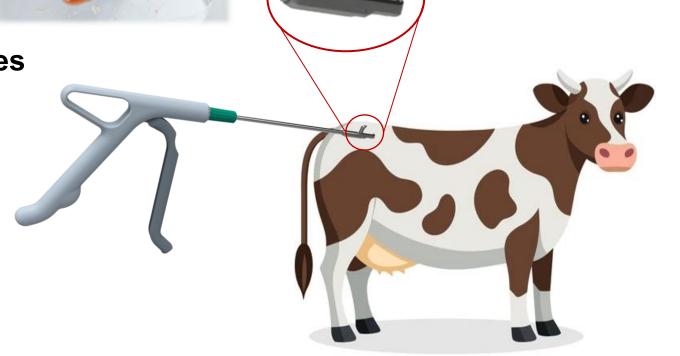
Media Composition

- · Animal supplements
- · Pharmagrade/Feed arade Recycling/
 - Methabolites withdr.
 - · Differentiation triggers
 - · Recombunant growth factor production

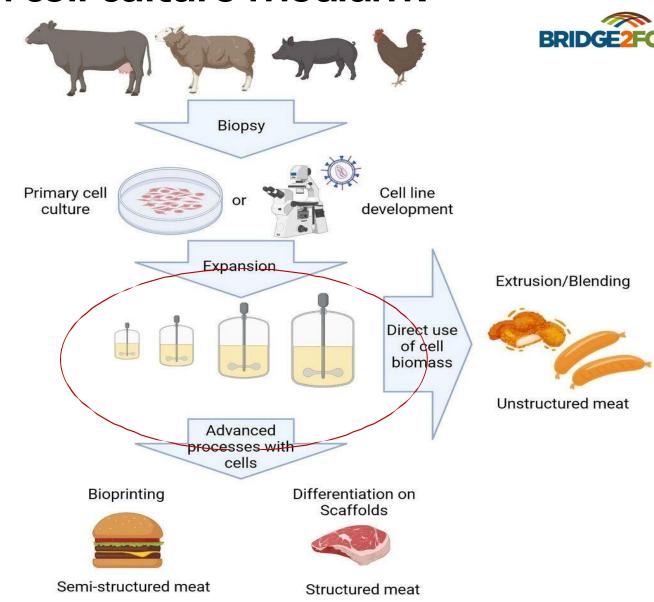
Differentiation

- Bioreactor Type
- Shear stress (mechanoreceptors)
- Scale-up
- Oxygen supply
- Automatization
- · Monitoring of differentiation



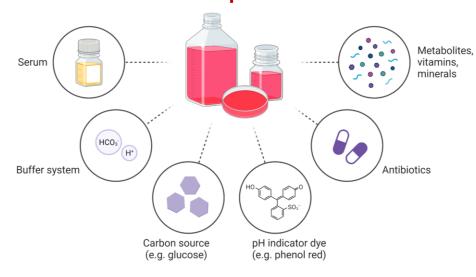

Cultivated meat manufacturing: Cells

- Primary cells vs immortalized cell lines
- Stem cells vs specialized cells
- Adherent vs suspension cell culture


Why focus on cell culture medium?

- Biggest contributor to cost of CM production
 - 31-99% based on various assumptions
 - Variability in estimates
 - References available

Kirsch M, Morales-Dalmau J, Lavrentieva A. Cultivated meat manufacturing: Technology, trends, and challenges. Eng Life Sci. 2023; 23:e2300227. https://doi.org/10.1002/elsc.202300227



Cultivated meat manufacturing: Cell culture medium

Culture medium = Food for cells to be able to thrive *in vitro* and perform their functions

Component	Examples	Function
Basal nutrients	Amino acids, glucose, vitamins, minerals, salts	Provide essential building blocks for cell metabolism and growth
A complex mixture of growth factors, hormones, amino acids, lipids etc. Fetal bovine serum (FBS) is traditionally used but chemically-defined alternatives (e.g., plant-based hydrolysates, recombinant proteins) desired for CM.		Promote robust cell proliferation and long-term cell maintenance
Growth factors (GF) and hormones	Insulin, FGF (fibroblast GF), IGF (insulin-like GF), TGF-β (transforming GF)	Regulate cell function, proliferation, and differentiation
Lipids and fatty acids	Oleic acid, linoleic acid, cholesterol	Support membrane integrity and metabolic function
Buffering agents	Sodium bicarbonate, HEPES, phenol red	Regulate pH
Antibiotics	Penicillin-streptomycin, amphotericin B	Prevent contamination

https://www.biorender.com/template/components-of-cell-culture-media

Cultivated meat manufacturing: Cell culture medium

- Cost and economic impact
- Proliferation vs differentiation media
- Pharma vs food grade
- Stability (storage and scale)
- Regulatory considerations
- Waste treatment and recycling

Author (year)	Summary	Assumptions	Production goal (kgyr ⁻¹)	Media type and cost estimate	Baseline media cost (US\$1 ⁻¹)	Bioreactor	Animal model	Cell type	Maximum cell density (cellsml ⁻¹)	Cell doubling time(h)	Baseline cost of product (US\$kg ⁻¹)	Media cost (%)
Risner et al. ²¹ (2020)	A preliminary TEA	Food grade Total cell volume for each bioreactor set equal to bioreactor volume	121,000,000	Essential 8 Vendor prices from ref.26.	377 (scenario 1 in ref. 26)	20,000 l STR, fed-batch	Beef	Bovine MSCs, growth variables based on human embryonic stem cells	Scenario 1: 1×10 ⁷ Scenario 2, S3: 9.5×10 ⁷ Scenario 4: 2×10 ⁸	Scenario 1: 24 Scenario 2, S3: 16 Scenario 4: 8	400,000	>99%
Humbird ¹⁰ (2021)	TEA and in-depth analysis if raw material supply chain is also scaled	Pharma-grade Scaled raw materials industries Metabolic engineering to reduce density inhibition CO ₂ inhibition at large volumes	6,800,000 in a 100,000,000 market	Defined, serum-free Regression and bulk prices to estimate component costs at scaled production	3	20,000 L STR, fed-batch or 2,000 L STR, perfusion	Mammalian	General mammal, growth variables based on CHO cells	8.6×10 ⁷	24	Fed-batch: 37 Perfusion: 51	60%
Vergeer et al. ²⁴ (2021)	Current and projected (to 2030) TEA using data from seven CM companies and seven suppliers	Incorporates proprietary data from CM companies Food grade	10,000,000	Defined, serum-free Vendor prices fromref.26 and supplier quotes	High: 5 <i>31.</i> 3 Mid: 126.2 Low: 16.6	10,000 LSTR and 2,000 L, perfusion with scaffolds, semi- continuous	Unspecified	Industry data averages	5×10 ⁷	30	High: 22,421 Mid: 1,708 Low: 150	>99%
Ashizawa et al. ²² (2022)	Examines how insect cells can reduce TEA costs, adapting the model from Risner et al. ²¹	Total cell volume per bioreactor set equal to bioreactor volume Food grade	121,000,000	Yeastolate- Primatone medium or Scheider's Drosophila medium Vendor and bulk pricing	Yeasto late- Primatone: 28.88 Drosophila: 13.65	20,000 L STR, fed-batch	Insect	Lepidopteran (Sf-9 and Hi-Five) or Drosophila melanogaster (S2) in sect cell lines	Lepidopteran: 2×10 ⁷ S2: 3.01×10 ⁷	Lepidopteran: 22.72 S2: 38.5	Lepidopteran: 4193 S2: 6426	>99%
Garrison et al. ²³ (2022)	Based on Risner et al. ²¹ and Specht ²⁶ , additional fixed, operational and labour	FGF2 and TGFβ alternatives Improved media Food grade	560,000	Essential 8 Vendor prices from ref.26	3.74 (scenario 5 from ref. 26)	20,000 LSTR, expansion and 30,000 LSTR, differentiation	Unspecified	Unspecified	Unspecified	Unspecified	63.69	27.90%

Goodwin CM, Aimutis WR, Shirwaiker RA. A scoping review of cultivated meat techno-economic analyses to inform future research directions for scaled-up manufacturing. Nat Food 5, 901–910 (2024). https://doi.org/10.1038/s43016-024-01061

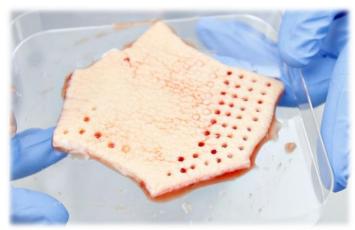
Design criteria for CC media

Constraints/nice to have

- Must be cheap! (no serum)
- Cruelty-free
- Ideally chemically defined

Must-do

- Maintain cellular physiology
- Keep cells proliferating
- Cells must be able to differentiate (if applicable)


Stem cells: connection with cultivated meat?

- Not cancer
- Can be maintained in cell culture for a long time
- CM media "inspired" by stem cell media!
- Lipid metabolism is important in stem cells
 - Important from the perspective of
 - Understanding cell physiology of cells for CM
 - Design of media

Bioprocessing

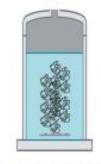
Muscle cells in 1 kg wet meat = 2.9×10^{11} (rough estimate)

Typical lab scale adherent cell culture in flasks

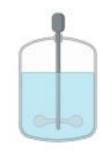
- Sensitive to shear rates
- ·Low-density cell culture
- Anchorage dependent

Cultivation and differentiation Requirements:

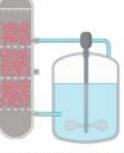
- · controlled conditions
- · efficient growth
- high volumes


Bioreactors

Cultivated Meat



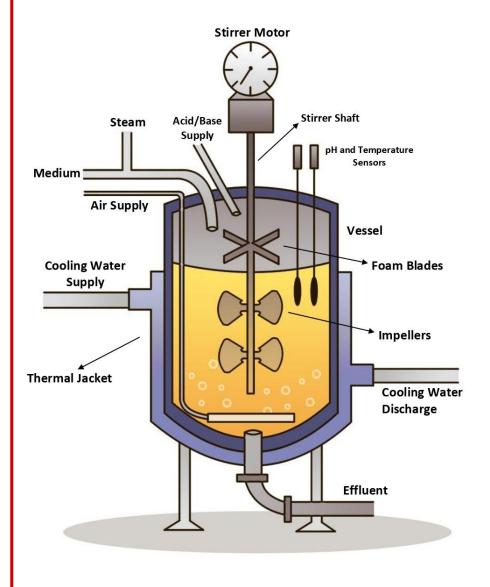
Hollow Fiber Bioreactor

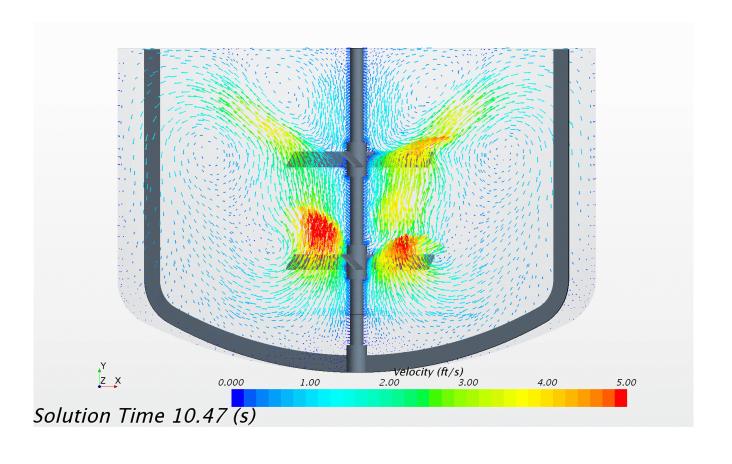

Airlift/bubble column Bioreactors

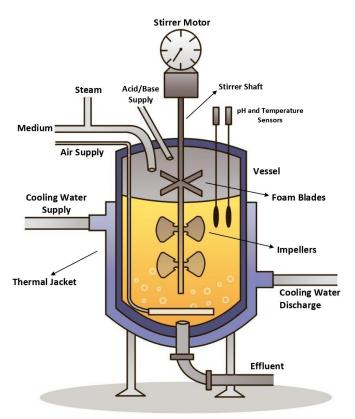
Stirred tank Bioreactors

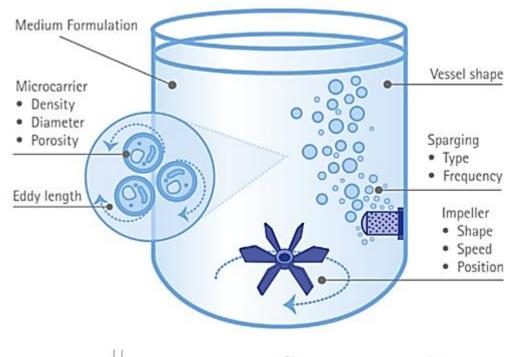
Wave bioreactor

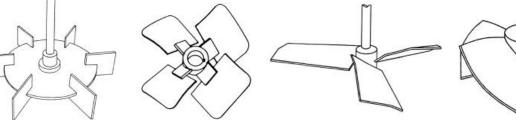
Fluidized/fixed bed bioreactors

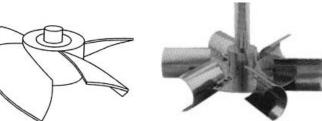

Single-use Bioreactors


Created with BioRender.com

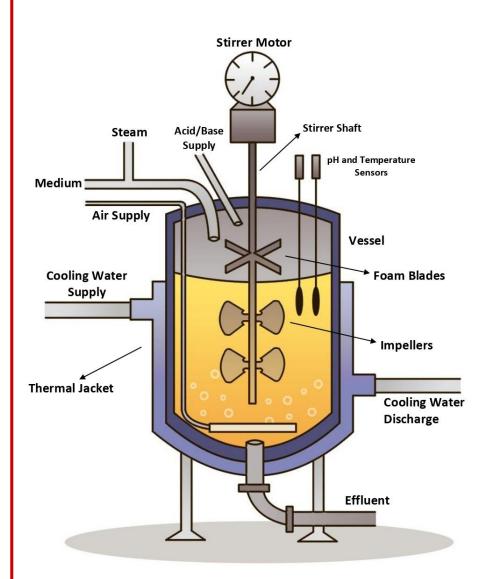


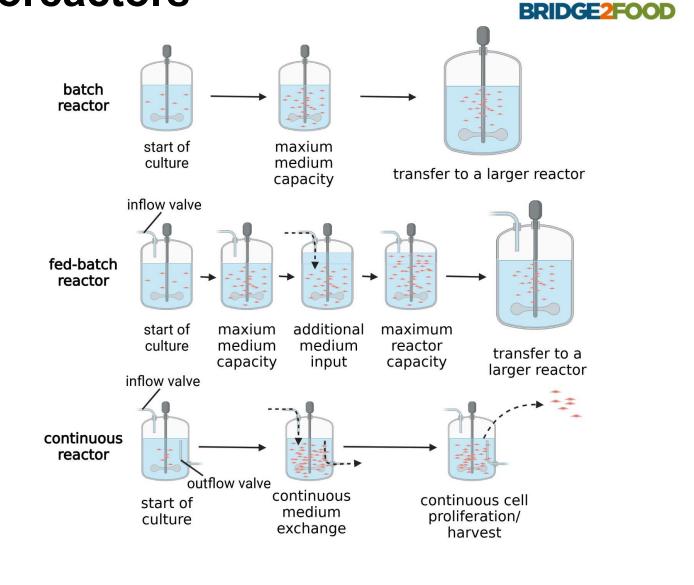


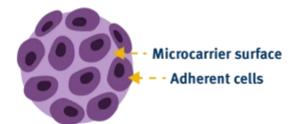


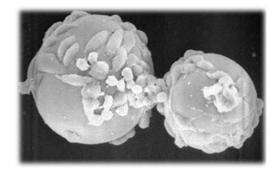


Critical factors:

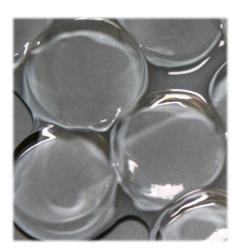

- Mass transfer efficiency (O₂, CO₂, nutrients distribution)
- Shear stress on cells
- Bubble formation/rupturing
- Temperature control
- pH and metabolic waste (lactate, ammonia) management
- "Gradients"

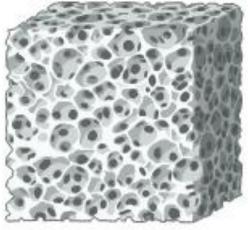


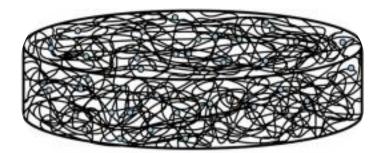


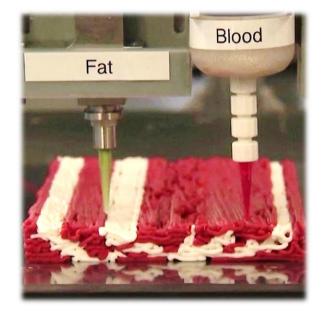


Cultivated meat manufacturing: Scaffolds






Microcarriers


Hydrogels

Porous Scaffolds

Fiber Scaffolds (Textile processes)

3D Printing-based

U.S. Proposed Regulatory Activity: Slowing Product Development?

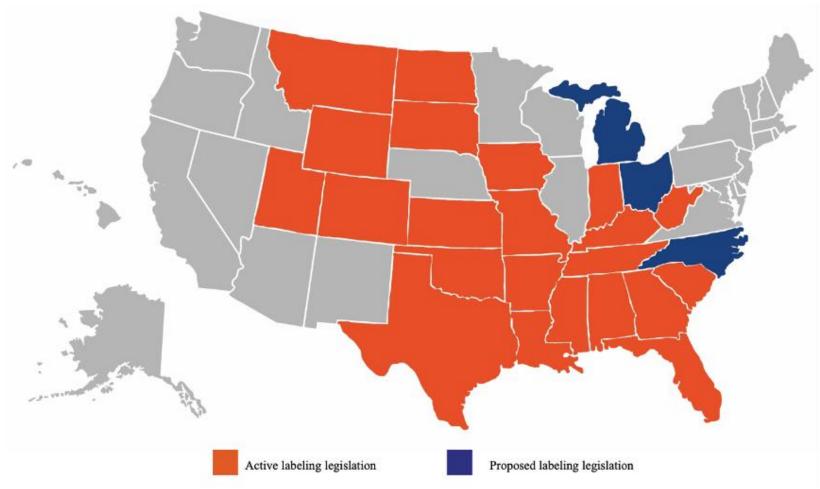
Table 1. Cell-cultivated products that have completed regulatory review in the U.S. as of August 2025.

Year ^{a,b}	Product	Company
2022 FDA and 2023 USDA	Cell-cultivated chicken	Upside Foods
2023 FDA and USDA	Cell-cultivated chicken	Eat Just
2025 FDA	Cell-cultivated pork fat	Mission Barns
and USDA		
2025 FDA (does not need USDA	Cell-cultivated salmon	Wildtype
approval)		
2025 FDA (USDA approval	Cell-cultivated chicken	Believer Meats
pending)		

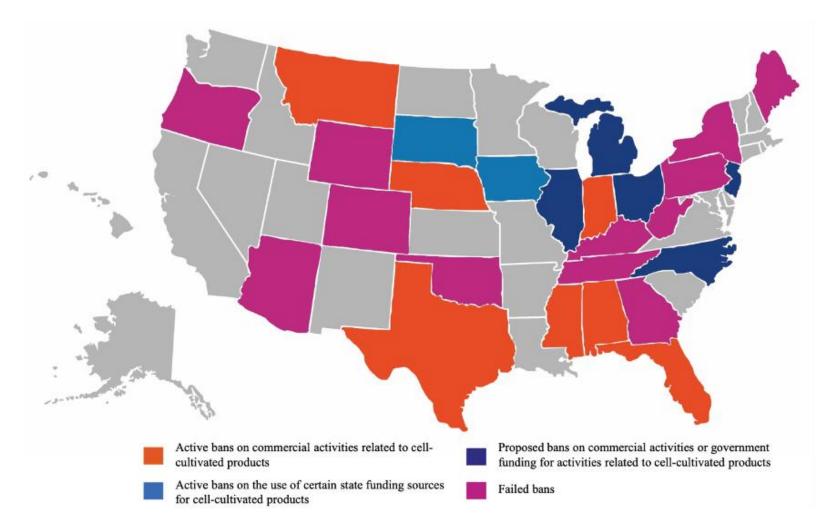
[&]quot;Information on completion of the FDA review process from FDA Human Food Made with Cultured Animal Cells Inventory, 2025 (FDA, 2025a).

^bInformation on completion of the USDA review process from Benson & Greene (2023) and Mission Barns (2025).

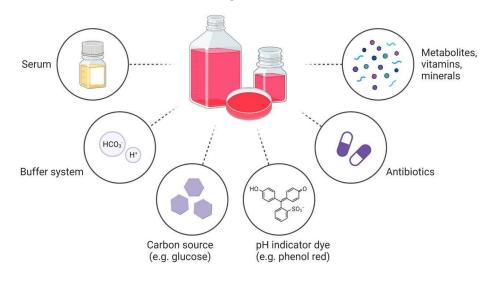
Cultivated meat manufacturing: Challenges and future outlook


- Organoleptic mimicry
- Scalability and cost reduction strategies
- Supply chain considerations
- Regulatory landscape
- Market readiness investments and adoption

Proposed or enacted labeling legislation relevant to cellcultivated meat and seafood products



States with proposed, enacted, and failed legislation aimed to ban cell-cultivated meat and seafood production, distribution, sale, and/or research

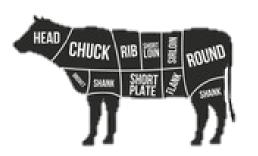


Cultivated meat manufacturing: Cell culture medium

Culture medium = Food for cells to be able to thrive *in vitro* and perform their functions

Component	Examples	Function
Basal nutrients	Amino acids, glucose, vitamins, minerals, salts	Provide essential building blocks for cell metabolism and growth
Serum/serum alternatives	A complex mixture of growth factors, hormones, amino acids, lipids etc. Fetal bovine serum (FBS) is traditionally used but chemically-defined alternatives (e.g., plant-based hydrolysates, recombinant proteins) desired for CM.	Promote robust cell proliferation and long-term cell maintenance
Growth factors (GF) and hormones	Insulin, FGF (fibroblast GF), IGF (insulin-like GF), TGF-β (transforming GF)	Regulate cell function, proliferation, and differentiation
Lipids and fatty acids	Oleic acid, linoleic acid, cholesterol	Support membrane integrity and metabolic function
Buffering agents	Sodium bicarbonate, HEPES, phenol red	Regulate pH
Antibiotics Penicillin- streptomycin, amphotericin B		Prevent contamination

https://www.biorender.com/template/components-of-cell-culture-media



Nutritionally, why doe we consume animal products?

COMPLETE PROTEIN(all 9 essential amino acids present)

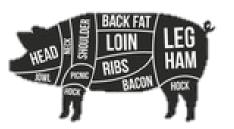
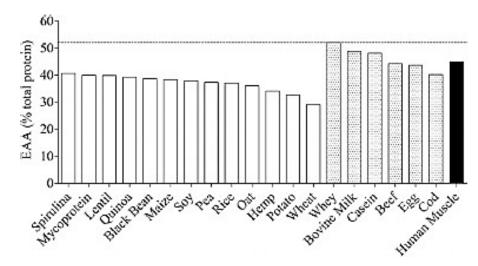
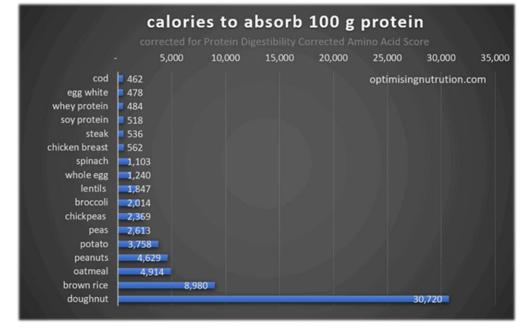


Table 2. Nutritional composition of main types of red meat (beef and pork) in USA, UK, and Spain.

		Beef			Pork	
	USA	UK	Spain	USA	UK	Spain
Energy (kcal)	126	129	131	144	124	155
Protein (g)	21.0	22.5	20.7	21.2	21.8	20.0
Fat (g)	4.0	4.3	5.4	5.9	4.0	8.3
SFA (g)	1.4	1.7	2.2	2.0	1.4	3.2
MUFA (g)	1.6	1.9	2.5	2.7	1.5	3.6
PUFA (g)	0.2	0.2	0.2	0.6	0.7	0.6
Niacin (mg)	6.2	9.7	8.1	4.8	6.9	8.7
Tiamin (mg)	0.1	0.1	0.1	1.0	1.0	0.9
Vitamin B ₁₂ (μg)	1.5	2.0	2.0	0.7	1.0	3.0
Iron (mg)	1.8	2.7	2.7	0.9	0.7	1.5
Zinc (mg)	3.9	4.1	3.8	2.0	2.1	2.5
Selenium (mg)	26.0	7.0	3.0	32.4	13.0	14.0
Sodium (mg)	54.0	63.0	61.0	54.0	63.0	76.0
Potasium (mg)	323.0	350.0	350.0	384.0	380.0	370.0

Data related to 100 g edible meat. SFA, MUFA, PUFA, saturated, monounsaturated, and polyunsaturated fatty acids. Modified from Delgado-Pando [40].





Nutritionally, why doe we consume animal products?

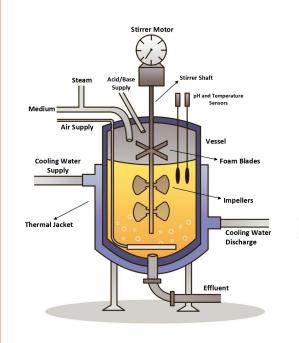
COMPLETE PROTEIN(all 9 essential amino acids present)



Nutritionally, why doe we consume animal products?

COMPLETE PROTEIN(all 9 essential amino acids present)

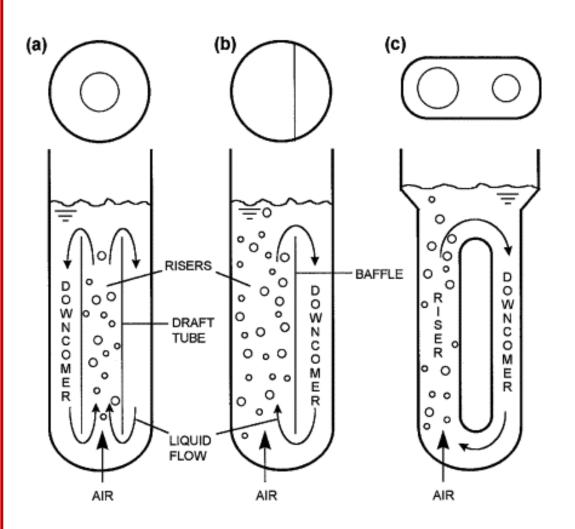
Share of average daily protein intake (%)

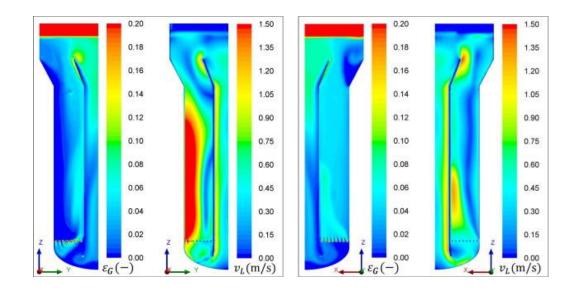


KEY FACTORS:

- Geographical
- Cultural
- Socioeconomical

STR 50L STR 200L


STR 500L


STR 1000L

STR 2000L

Estimate based on computational modeling:

A 300,000 L airlift bioreactor can produce enough cells to 75,000 people annually (10 kg per capita annual consumption).

Chisti Y, Moo-Young M. Bioreactors, Ed. Robert A. Meyers, in Encyclopedia of Physical Science and Technology (3rd Edition), 2003, Academic Press. https://doi.org/10.1016/B0-12-227410-5/00067-3.

Li X, Zhang G, Zhao X et al. 2020. A conceptual air-lift reactor design for large scale animal cell cultivation in the context of in vitro meat production, *Chemical Engineering Science*, 211: 115269. https://doi.org/10.1016/j.ces.2019.115269.

BEZOS CENTER

FOR SUSTAINABLE PROTEIN

Cultivated meat manufacturing: Scaffolds

Legend

muscle

Fibroblast

Adipogenic

Endothelial

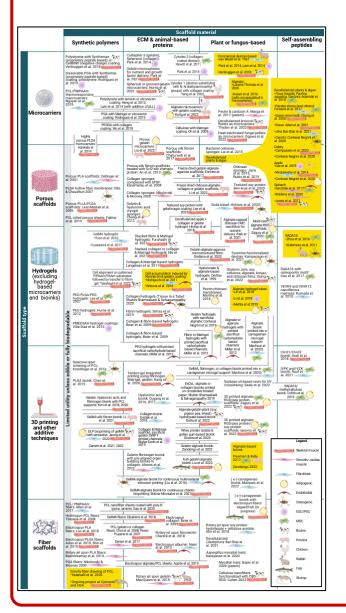
Osteogenic

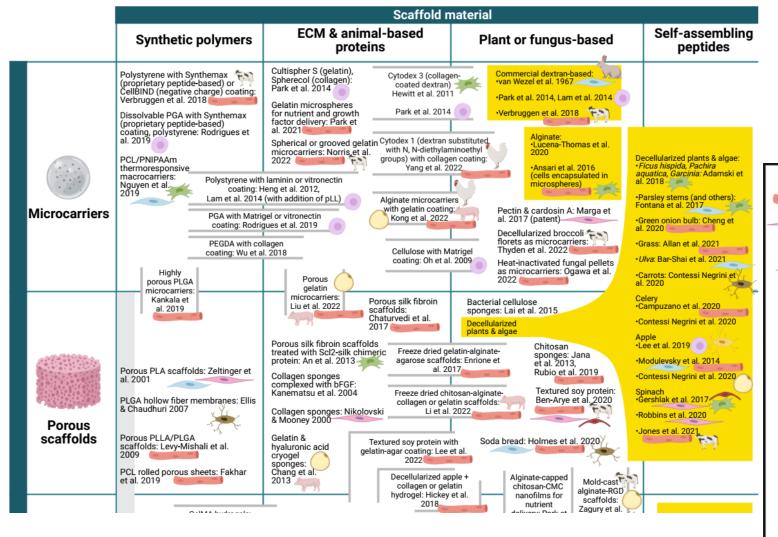
ESC/iPSC

MSC

Bovine

Porcine


Chicken


Rabbit

Shrimp

Skeletal muscle

Smooth/ cardiac

GFI Infographic: <u>Download</u> <u>Video</u>

Thank You!