

AIDATA CENTER INSIGHTS

INCLUDING

KEYNOTE PANEL GETTING GROWTH RIGHT - INNOVATION & SUSTAINABILITY IN THE AI DATA CENTER

1 Sustained Demand

Unlike previous tech booms, current data center growth is characterized by zero vacancy and pre-payment for capacity, indicating immediate and sustained demand rather than speculative building.

Key Headwinds

Major challenges to continued growth include power availability (long utility lead times, complex relationships), supply chain constraints for components, and the ecosystem's ability to keep pace with rapid technological advancements.

7 Timescale Misalignment

A significant challenge is the mismatch between the slow, multi-year planning cycles of utilities and the rapid, annual (or even weekly) evolution of AI models and hardware.

The distinction between AI training and inference workloads is blurring, with continuous feedback loops and reinforcement learning driving a constant need for new models and evolving data center footprints.

Sustainability Initiatives

Microsoft aims for carbon negative, water positive, and zero waste by 2030, requiring innovation and ecosystem collaboration across carbon, water, waste, and ecosystem protection.

Supply Chain Sustainability

Microsoft mandates suppliers to reduce Scope 3 emissions, setting annual targets and requiring 100% clean energy by 2030, extending sustainability efforts throughout the entire supply chain.

JC Pan
VP, Cloud Supply Chain
Sourcing
Microsoft

Dion HarrisSr. Director, Al and HPC
Infrastructure Solutions **NVIDIA**

Laura Ortman
CEO
Cologix

Steven Carlini
Chief Al Advocate
Schneider Electric

KEYNOTE SCALING UP TO AGI

RAM VELAGA, SVP & GM, CORE SWITCHING GROUP, BROADCOM

Shift to Specialized Accelerators

The industry is moving away from general-purpose GPUs towards specifically optimized accelerators (XPUs) to achieve the lowest cost and power per token.

Need for Large-Scale Clustering

Individual XPUs are insufficient for large language models, requiring thousands to hundreds of thousands of XPUs to be clustered and operate as a single supercomputer.

Network Bottleneck

XPUs are often idle 20-50% of the time waiting for data to traverse the network, making the network an extremely critical component in large-scale AI systems.

Ethernet as the Solution

Ethernet is presented as the reliable, fast, and open network choice for building the world's largest distributed systems, similar to Google's early data centers.

Decoupling XPU and Network Layers

Ethernet uniquely decouples XPU transaction management from the network layer, allowing hyperscalers to innovate their XPU architectures without being constrained by proprietary network specifications.

Broadcom's Ethernet Innovations

Broadcom has developed 100+ terabit switches and the Tomahawk Ultra (50 Tbps) chip, achieving sub-250 nanosecond latency and line-rate 64-byte packet handling, challenging previous limitations of Ethernet.

PRESENTATION

AGENTS, ARCHITECTURE AND ALIGNMENT - WHAT THE NEXT WAVE DEMANDS OF OUR INFRASTRUCTURE

RICHARD HO, HEAD OF HARDWARE, OPEN AI

Clobal Scale Computing

The industry is moving towards global-scale computing, necessitating many massive data center campuses spread worldwide to accommodate demand and user distribution.

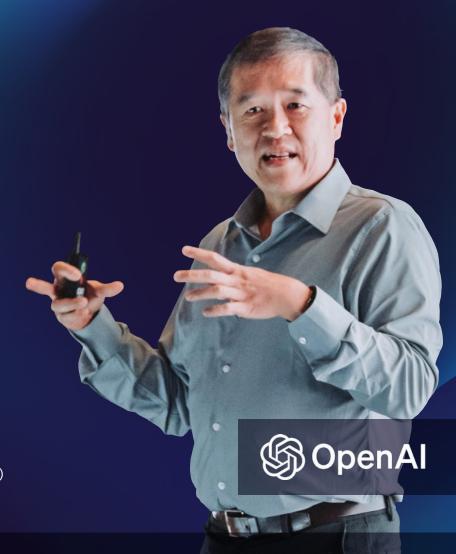
Infrastructure Demands

Agentic workloads require significant infrastructure evolution, including advanced memory architectures (HBM, disaggregated memory), low-latency, high-throughput, low-power networking, and efficient thermal management.

7 Hardware Alignment

Safety and alignment must be embedded directly into hardware, not just software, to ensure reliable and secure Al operation.

Critical hardware features include robust telemetry for anomalous events, secure enclaves to prevent malicious injection, and secure global networking against physical tampering.


Resilience & Error Correction

Infrastructure needs high resilience through network redund

Infrastructure needs high resilience through network redundancy, self-healing protocols, onchip error correction, and silent data correction for both training and inference.

ndustry Investment

There's an urgent need for increased investment in infrastructure (fabs, wires, switches, racks) to meet the exploding demand driven by exponential AI growth.

PRESENTATION REDEFINING THE AI DATA CENTER: FROM TOKENS TO WATTS, AND BEYOND THE RACK

CHRIS SHARP, CTO, DIGITAL REALTY

Complexity of Tokenomics

Not all tokens are equal; understanding total token production, token lifespan, and deployment (e.g., Mixture of Experts models) is crucial, advocating for private AI exchanges for critical connectivity.

Power (Watts) as Product

Power is a binary enabler; critical considerations include total capacity, power densification (e.g., NVIDIA DGX certification), and sustainable power sources like solar, wind, and small modular reactors (SMRs).

The capital required for AI infrastructure is monumental, leading to concerns about technological obsolescence (GPUs every 12 months), ROI, and the need for efficient operations (low PUE).

Data Center Site Selection

Key factors for data center selection include proximity to consumers and emerging AI ecosystems, high optical throughput for connectivity, modular facilities for retrofitting (air to liquid cooling), and supporting heavy rack floor loading.

Silicon changes rapidly, unlike concrete, requiring careful consideration of where hardware is placed and how to evolve with new capabilities and efficiencies in the market.

Software & Models

Emphasizes understanding and leveraging various models (RAG, SLMs, hierarchical reasoning) to find cost-effective solutions, rather than solely relying on large parameter models.

PANEL TECHNOLOGY ROADMAPPING - DUE DILIGENCE FOR NEAR TERM VS. HORIZON TECHNOLOGIES

7 Rapid Adaptation

The industry faces challenges integrating rapidly changing chip technology, especially Al hardware, into current operations and future planning due to the quick pace of innovation.

Flexibility in Design

A key strategy to combat obsolescence is building flexibility into electrical, mechanical, structural, and architectural designs, planning for "known unknowns" and a 15-20 year occupancy period.

2 Proactive Planning

Companies design 5-7 years ahead, use modular designs, and engage in supplier pre-purchase programs to adapt to customer needs and manage supply chain lead times.

○ / Power Constraints

Power availability is a major concern, leading to exploration of alternative solutions like natural gas generation, small modular reactors (SMRs), and hydrogen, alongside traditional utility power.

Super Capacitors

Super capacitors are being explored for efficient mechanical ride-through and as a filter to manage how AI loads affect UPS systems.

Of Upstream Collaboration

There's a recognized need for better upstream partnerships and transparent conversations with chip designers and hardware manufacturers to proactively address challenges like cooling and power availability.

Marc Hourican
CTO
CleanArc Data Centers

Clean Arc

Brittany Miller
Global SVP, infrastructure
Development
NTT Data Centers

О NTT DATA

Ryan Mallory
President & COO
Flexential

FLEXENTIAL

Karen Petersburg
VP, Data Center Development
& Construction
PowerHouse Data Centers

POWERHOUSE

EXCLUSIVE INTERVIEW WITH...

PHILL LAWSON-SHANKS, CHIEF INNOVATION OFFICER, ALIGNED DATA CENTERS

