
Rezulf STAND ON QUALITY

Moisture Resistant MDF

Laminated MDF Board

STAND

Korosten MDF factory (Zhitomir region, Nothern Ukraine) is an ecologically tested and clean production of MDF – plates and laminates under commercial brand "Rezult". The factory is equipped with modern industrial machinery; also a huge warehouse facility and a large internal transportation network.

Brand new equipment of worldwide known German companies Siempelkamp, Homag and Wemhoner was installed in 2011. Auxiliary equipment is also supplied by Siempelkamp company.

The annual output of MDF production is

300 000_{m3}

The annual output of laminate is

6 mln_{m2}

The strong side of the factory is a high quality of wood as raw material. The "Rezult" products are made only from the certified coniferous timber (but not from waste wood).

800

workplaces

Ongoing and continuous work takes place

24 hours/daily

Besides technological lines for the MDF and laminate production there is a huge warehouse facility with total area about 32 000 m2 for storing of finished products. In addition to it there is the large logyard, for storing up to 70 000m3 of logs as raw material. It is enough to provide uninterrupted work of the factory during 2 months.

Area of the factory

70 hectares

Aggregate investments

170 mln euro

Our quality standards

The quality of the "Rezult" production is based on the 7 main principles. Due to constant and strict internal standards "Rezult" succeeded in complete perfection of the quality.

REZULT Technology

Modern technologies

Industrial process is based on the most innovative engineering designs

REZULT Material

Using of high-quality raw material

All "Rezult"'s products are fabricated only from certified high-quality wood.

6 REZULT Ecology

The safe exploitation and green manufacturing

The safe and eco-friendly production is confirmed by valid quality certificates and meet all the requirements of International standards.

REZULT Quality

Absolute control

All stages of the process, beginning from the raw material supply till the delivery of finished products to consumer, are under the strict technical control of the international crew of highly qualified specialists.

3 REZULT Enterprise

Total automation

It is one of the most powerful and advanced production lines in Europe, which is fully equipped with the modern European machinery.

REZULT Customer focus

All business processes are based on the "voice of the client" and customer's demands

The effective satisfaction of consumer's needs and well-timed responses to all client's requests are the main aspect of the work.

REZULT Reliability

Fair guarantees

"Rezult" provides fair guarantees of stability and steadiness of everything; beginning with the partnership and ending with the quality of production and well-timed delivery.

The result declared by the "Rezult" factory is not only the high-quality wood materials but also the guarantee of you get the solid base for many years. Choosing the "Rezult" products means the correct choice and good deal.

The Korosten MDF factory is focused on the using of equipment made by worldwide known leaders of market of the woodworking machines.

Particularly there are technological lines installed by German company "Siempelkamp" - a widely recognized leader in woodworking machinery manufacturing. Also there is a Laminating line by Wemhoner firm and the line of Laminate-flooring production by the Homag.s firm.

Auxiliary equipment is also supplied by "Siempelkamp" company. As well the equipment, supplied by such industrial giants as Metso, Buttner and others, is used at MDF factory.

The special ContiRoll press which is 35,4 meters long has a unique construction and is installed at the factory. It allows to operate the pressing process in a continuous mode, evenly distributing pressure along the length and the width of the press. It leads to the increase of the factory's productivity, improves the quality of finished products and allows to reduce materials consumption.

The production includes all points that are necessary for quality output. The own industry was launched with maximum capacity of 150 tn/daily. It allows to satisfy every need of the factory for 100%. Also it gives an opportunity for maximally flexible changing of production features, concerning not only pricequality ratio, but also a fulfillment of any additional consumer's suggestion connected to the durability of products as well.

Korosten MDF-factory successfully passed the comprehensive audit of conformity to production standards in 2015. The production meets all valid international quality standards ISO 9001, ISO 14001.

<u>LONDON</u>

RAW MDF board

MDF (Medium Density Fibrebroad) is a medium density board made of wooden fiber.

This material represents the fine wood's fraction, which is thoroughly pressed.

MDF panels are formed by applying high temperature and pressure to the crushed wood fibers.

Physical and mechanical parameters of MDF boards		2070 mm 1220 mm		Standards of thickness (mm) 6 / 8 / 10 / 12 / 15 / 18 / 22 / 25 / 30					
Nominal thickness of plates, ± 0,2 - 0,3 mm	2,5-4	4-6	6-9	9-12	12-19	19-30	30-45		
Thickness swelling during 24 h,% (En 317)	35	30	17	15	12	10	8		
Durability in stretching across the plates, MPa (EN 319)	0,65	0,65	0,65	0,60	0,55	0,55	0,50		
Flexural strenght, MPa (EN 310)	23	23	23	22	20	18	17		
Elastic moduls in flexure, MPa (EN 310)	-	2 700	2 700	2 500	2 200	2 100	1 900		
Separation of surface, min H/mm2 (EN 311)				1					
Resistivity of pulling screws out from the plate, min, H (EN 320)	For the th	vickness >		100					
Resistivity of pulling screws out from the edge, min, H (EN 320))	For the th	vickness >		800 800 800					
Mineral content, max, % (ISO 3340)	0,45								
Formaldehyde content mg/100g (EN 320)	≤ 8 emission class E1/ CARB FSC/ E 0,5								
Humidity,% (EN 322)				4-11					
Absorption of water 24h, %	70	70	35-40	35-40	40	40	40		
The limiy deviations in width and lenght , mm	±5								
Nominal density (kg/m ³ %7	700-900								
Amount of sand (max) %	0,05								

RAW MDF board

MDF boards are used in production of decorative furniture fronts, objects for veneering of interiors and joinery.

In comparison with other wood products, MDF plates have much better and improved features that can expand the fields of application such as:

- Processing of plates on milling machines. MDF plates are handy and easy in milling- processing, as they have homogenous mechanical features.
- Endurance and durability in service. MDF plates have are durable, are good in keeping form and firmly hold the fixing findings.

Autocharging norm

	Name Thickness		ckness Density	Size of plate (mm)		Pallets					Eurotruck				
Nº	of gds	(mm)	(kg/m3)	Width	Length	Number kg of plates	m ²	m ³	Weight (netto), kg	Weight (brutto), kg	Number of pallets	m ²	m ³	Weight (brutto), kg	Weight (tare),kg
1.	RAW MDF	3	900	2 800	2 070	138	799,85	2,40	2112	2266	9	7 198,63	21,60	20394	148,00
2.	RAW MDF	4	865	2 800	2 070	112	649,15	2,59	1687	1871	9	584,35	2337,00	16839	148,00
3.	RAW MDF	5	845	2 800	2 070	88	510,05	2,55	2091	2245	9	4590,43	22,95	20205	134
4.	RAW MDF	6	845	2 800	2 070	72	417,31	2,50	2050	2204	9	3755,81	22,53	19836	134
5.	RAW MDF	8	835	2 800	2 070	54	312,98	2,50	2050	2204	9	2816,86	25,53	19836	134
6.	RAW MDF	10	800	2 800	2 070	48	278,21	2,78	2168	2322	9	2 503,87	25,04	20898	134
7.	RAW MDF	12	800	2 800	2 070	40	231,84	2,78	2168	2302	9	2086,56	25,04	20718	134
8.	RAW MDF	14	785	2 800	2 070	36	208,66	2,50	1963	2097	9	1 877,90	22,53	18869	134
9.	RAW MDF	16	790	2 800	2 070	30	173,88	2,78	2168	2302	9	1 564,92	25,04	20718	134
10.	RAW MDF	18	790	2 800	2 070	26	150,70	2,71	2113	2247	9	1 356,26	24,41	20223	134
11.	RAW MDF	19	790	2 800	2 070	26	150,70	2,86	2230	2364	9	1 356,26	25,77	21276	134
12.	RAW MDF	22	790	2 800	2 070	22	127,51	2,81	2191	2325	9	1147,61	25,25	20925	134
13.	RAW MDF	25	780	2 800	2 070	20	115,92	2,90	2204	2338	9	1043,28	26,08	21042	134
14.	RAW MDF	28	780	2 800	2 070	18	104,33	2,92	2190	2324	9	938,95	26,29	20916	134
15.	RAW MDF	30	780	2 800	2 070	14	81,14	2,84	2215	2349	9	730,30	25,56	21141	134
16.	RAW MDF	38	750	2 800	2 070	14	81,14	3,08	2248	2382	9	730,30	27,75	21438	134

- Its smooth surface allows usage of MDF panel for quality coloring, laminating, gluing of decorative coating film, veneering and other coverings.
- MDF plates are resistant to different fungus and microbes; that is why these products are hygienically safe at home using.
- Advantages:
 - high quality;
 - homogenous composition and equal density;
 - natural product;
 - · ecologically safe;
 - ease of mechanical processing;
 - good heat- and sound- insulation;
 - capability of different decor and veneering.

LONDON

RAW HDF board

HDF (High Density Fiberboard) is a high density wood fiber board. This is modern high-dense material, which has recently appeared at the market of wood plates. MDF boards are produced applying hard pressure and high temperature to crushed wood fibers of coniferous softwood. Actually, HDF boards are much more elaborated analogue of MDF boards, but the density of HDF exceeds the density of MDF and it is always more than 800-1050 kg/m3. This feature of HDF boards is highly evaluated in furniture and building industries.

		1
Physical and mechanical parameters of RAW HDF boards		-
Nominal thickness of plates, mm	6-9	9-12
Thickness swelling during 24 h,% (En 317)	12	10
Durability in stretching across the plates, MPa (EN 319)	1,4	1,2
Flexural strenght, MPa (EN 310)	50	45
Elastic moduls in flexure, MPa (EN 310)	4 500	4 100
Separation of surface, min H/mm2 (EN 311)		1
Resistivity of pulling screws out from the plate, min, H (EN 320)	For the thvio	ckness > 15 mm
Resistivity of pulling screws out from the edge, min, H (EN 320)	For the thvio	ckness > 15 mm
Mineral content, max, % (ISO 3340)	0,4	45
Formaldehyde content mg/100g (EN 320)	≤ 8 class of	emission E1
Humidity,% (EN 322)	4-11	I
Absorption of water 24 h, max, %	35 - 4	40
The limiy deviations in width and lenght , mm	18	1
	0.0	_

LONDON MERCHANT

> The exclusive features of HDF boards are represented by the high size's steadiness, high density, perfect horizontality, unique quality of processing.

HDF boards and panels possess improved ecological features, which are straightly connected with some special aspects of their production (technological process). The process of technological production meets all valid recognized hygiene and health care standards. In production of HDF boards only clean and ecologically safe method is used with minimal production wastes. Highly qualified HDF boards and panels are nonhazardous for health of workers and customers.

Autocharging norm

		ı		Size of the		Pallets				E			
N∘	Name of gds	Thickness (mm)	Density of plate (kg/m²)	Width	Length	Number of palets	m²	m³	Weight netto, kg	m²	m³	Weight Brutto, kg	Weight (tare), kg
1.	HDF	3	870	2 800	2 070	138	799,45	2,4	2 088	7 195,05	21,6	18 792	155
2.	HDF	6,6	920	2 800	2 070	88	510,05	2,75	2 530	4 950,45	24,75	22 770	155
3.	HDF	7,4	930	2 800	2 070	72	417,3	3,08	2 864,4	3 755,79	27,72	25 779,6	154
4.	HDF	7,5	930	2 800	2 070	72	417,3	3,12	2 901,6	3 755,79	28,08	26 114,4	154
5.	HDF	8	920	2 800	2 070	54	301,3	2,5	2 300	2 711,7	22,5	20 700	154
6.	HDF	9,6	930	2 800	2 070	54	301,3	3	2 790	2 711,7	27	25 110	134

Wagon loading norm

		Thickness	Density	Size of the	sheet (mm)	Pa	llets	1		
Nº i/o	Name of gds	(mm)	of plate (kg/m3)	Width	Length	Number of pllates	Number of pallets	Number of sheets	Volume m3	Weight kg
1.	HDF	3	870	2 800	2 070	138	30	4 140	71,99	62 631,3
2.	HDF	6,6	920	2 800	2 070	88	30	2 640	101	92 920
3.	HDF	7,5	930	2 800	2 070	72	30	2 160	93,9	87 327
4.	HDF	8	920	2 800	2 070	54	30	1 620	75,12	69 110,4

 Size
 Standards of thickness (mm)

 2800 X 2070 mm
 3
 4
 5
 6
 6,9
 8

HDF boards and panels are widely used for:

- back walls of cabinet and cushioned furniture;
- bottoms of boxes and baskets;
- inside doors and compartment doors;
- the base of furniture fronts;

<u>LONDON</u>

- decorative inserts in different furniture constuctions;
- facing walls, suspended steles, advertisement hoarding and billboards.

Lacquered surface of HDF boards is strongly resistant to different chemicals, pronounced temperature drop haightened humidity in lodgments.

R

2800 x 2070mm / 2440 x 1220mm CUSTOM SIZES (on request)

Industry Leading Density (µ-790kg/m3)

RAW moisture resistant MDF board

Moisture resistant MDF boards and panels are characterized by increased density. Produced by the dry pressing method under the high pressure the plates and panels are highly resistant to moisture, do not swell in the moist medium, do not warp and go to ruin under the influence of steam.

· art	6. 108								
	hysical and mechar vater-resistant MDF				1				
1	Nominal thickness of plates,	mm	6-9	9-12	12-19				
	Thickness swelling during 24	h, % (EN 317)	17	15	15				
	Durability in stretching across	s the plates, MPa (EN 319)	0,8	0,75	0,75				
	Flexural strength, MPa (EN 3	310)	27	26	24				
N S	Elastic modulus in flexure, M	Pa (EN 310)	2 700	2 500	2 400				
	Separation of surface, min H	/mm2 (EN311)		1					
	Resistivity of pulling screws of the plate, min, H (EN320)	out from		Measured for thickness > 15 мм	100				
	Resistivity of pulling screws of the edge, min, H (EN320)	out from		Measured for thickness > 15 мм	800				
	Mineral content, max, % (ISC	O 3340)		0,45					
	Formaldehyde content mg/10	00g (EN 320)	≤ 8 emissi	≤ 8 emission class E1/ CARB FSC/ E 0,5					
	Humidity, % (EN 322)								
	Absorption of water 24 h, ma	x, %		40					
	Amount of sand (max) %			0,05					
-	Nominal density (kg/m³) 7%		820	790	790				
1	Deviation from the straightne	ss of edge, mm/m		≤1					
1		Chandra City							
Service Control of the Control of th	Size 2800 X 2070 mm	Standards of thicknes	ss (mm)	THE PERSON NAMED IN	W DESCRIPTION OF THE PARTY OF T				

LONDON

Moisture resistant MDF boards and panels are fabricated from highly qualified timber and characterized by excellent sound proofing properties. These are easily yield to mechanical processing by standard tools, possess high properties of durability and hardness and at the same time plasticity in processing.

So moisture resistant MDF boards and panels can be used as wall panels, base for fabrication of kitchen and bathroom constructions and for some other aims. These boards can be used in the humid environment and can be endure casual contact with moisture. The moisture-resistant surfaceof MDF panels allows you to apply decorative materials or paints on ready-made furniture, which allows designers of furniture to introduce their art ideas in life.

We can make any customized decoration of laminated MDF boards. Laminated boards and panels are fabricated directly from half-finished base boards. At the end-stage of the process MDF boards and panels are covered with different decoration on one or two their sides.

月月		1	M									
Physical and mechanic	al parar	meters c	of MDF pla	ates								
Nominal thickness of plates, r	nm.				9-1	2	12-19	19-30	30-40			
Thickness swelling during 24	h, % (EN	317)			≤ 18	3	≤18	≤18	≤18			
Thermal stability of the coatin	g (at 180	°C) H/B			unchar	nged	unchanged	unchanged	unchanged			
Hydrothermal stability of the o	coating H/I	В			unchar	nged	unchanged	unchanged	unchanged			
Resistance to contamination	(coffee, ac	cetone) H/E	3		unchar	nged	unchanged	unchanged	unchanged			
Specific resistance at normal	separatio	n of a cove	ring, lower lii	mit H/mm³		≥0,6						
Resistivity of pulling screws o	ut from the	e plate, mir	n, H (EN320)		is mea	sured kness >15	i mm		100			
Resistivity of pulling screws o	ut from the	e edge, mir	n, H (EN320)		is mea for thic	sured kness >15	i mm	800	800 750			
Mineral content, max, % (ISO	3340)					0,45						
Formaldehyde content mg/10	0g (EN 32	20)			≤8 class of emission E1/ CARB FSC / E 0,5							
Absorption of water 24h, %					≤25							
Impact strength of the use su	rface from	the height	: 1700 mm (n	netal ball test)	≤9							
Resistance of a surface of a c	covering to	o scratching	g H			≥1,5						
Surface resistance to abrasion	1				≥350							
Density kg/cm³ ± %7						700-900						
	- I-B		Char	adards of th	isknoss (r	**************************************	alettii titi 10		ESSESSION E			
Size			Stal	ndards of th	nckness (r	HTT1)			Harris - Institut			
2800 X 2070 mm	8	10	12	16	18	19	22	25	THORE BY A			
one-sided MDF-plate	0	•	•	•	•	•	•	•				
two-sided MDF-plate	0	0	0	•	•	•	0					

LONDON

O - under the order

- warehouse program

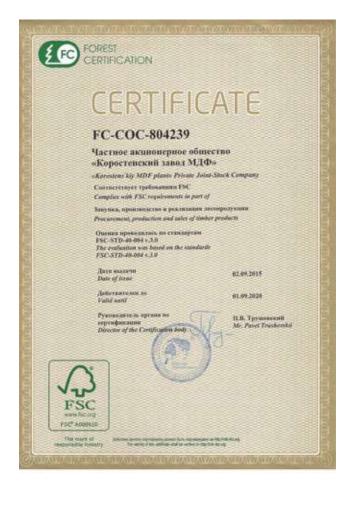
All decorative plates have the increased resistance of a surface to adverse operating conditions due to impregnation (preliminary processing of paper).

It is easy to keep them in normal condition and care them in the process of exploitation. MDF boards and panels are suited for sawing and for processing by different mechanical devices. Decorative MDF and HDF boards can be manufactured to order in a variety of textures and in a wide range of colors.

Rezult decorative MDF and HDF boards are able to satisfy the most various requests of clients.

ALL REZULT PRODUCTS

Certified in accordance with international standards



CERTIFICATE

PJSC "Korostenskii MDF plant"

Legal address: Various Vallab 36, 01034.

Address of production facilities: Serges Kernsky St., 118, 11011, Facilities, Street, edges, Ultrans

Doops: Emiliation and sating of MOS board, (amounted Rosoning

Through an audit, documented in a report, it was verified that the management system fulfile the requirements of the following standard:

ISO 9001: 2015

ition is directly triked to the IONet Partner's original sentilises and shall her be used as a stand-state document. Registration number: DE-31800102 CM15

TONCE - Star United Managing Constant of States (Managing Constant of States (Managing Constant of States)

Monael Drestner
Managing Drestner of
DIGS Monael Green

ЧАО "Коростенский завод МДФ"

Rysigenteesed appear Appear agreement returns on the processed day, IR. 01004. pt. Cappear Name Co. 11-6, 11001. pt. Cappear Name Co. 11-6, 11001. pt. Cappear Name Co. 11-6, 11001.

Систему Менедамента Качества

Попредством ардипарацій посверки відрирантиральной в этите. Вито подучено подгавонирами в трити, ито уга система нечереленть отвещем трабованиви опедина.

130 9001 : 2015

21400102 GM18 2018 87-08 2001-87-87 Delimerates pa

Stop He 6h

accounted from 1956 Screen August Coharacterists 11, 1955 Streets on Asia Sources and Coharacterists (August 1956) (Annual Coharacterists (August 1956) (Annual

Rezult Ukrauine LLC Ukraine, 04070, Kyiv, Petra Sahaidachnogo str., 11

www.rezult.pro

Rezull® STAND ON QUALITY

UK Import & Distribution Partner London City Merchant Ltd Unit 6 Meridian Business Park Fleming Road Waltham Abbey EN9 3BZ

T / F +44 (0) 01992 765412 E-mail enquiries@lcmerchant.co.uk Web www.lcmerchant-distribution.co.uk

More Profit

Fewer consumable costs and less labour intensive

Industry Leading

We offer industry leading density from 780-1100 kg/m3

Better Quality

Less preparing and finishing required, reducing primers/sanding/de-nibbing

Exclusive

We are the exclusive UK Import and Distribution Partner for Rezult LLC

Support

We support the Ukraine

Enhanced Reputation

Improve your reputation with internal stakeholders and external clients