

SentraCath Blood Control IV Safety Cannula

Reduces the risk of blood exposure and contamination

 Preventation of accidental needle stick injuries

Bio-compatibility and longer indwelling time

• Provides clean access site

Challenges faced during patient care

Use of peripheral intravenous cannula (PIVC) places healthcare workers at risk of exposure to blood and possible transmission of a number of pathogens, including hepatitis B, C and HIV.

Accidental blood exposure may occur through needle stick injuries (NSIs), catheter leakage, back flow at the catheter hub or splatter that originates when needle safety mechanisms are activated during PIVC insertion.

Blood control safety IVCs help in reducing such blood leakage and blood exposure events, leading to reduction in the risk of occupational blood-borne illness exposure to healthcare professionals.

Risk of blood exposure and contamination

Blood leakage is reported to occur upto 39.1% in conventional PIVC.¹

Blood control safety IVCs can significantly eliminate the risk of blood exposure while maintaining non-inferior insertion success rates.²

Accidental needle stick injuries

NSIs are one of the most anxiety-provoking occupation-related work hazards, due to a risk of exposure to blood borne pathogens in patient blood.

The World Health Organisation (WHO) estimates that each year, 3 million HCP experience percutaneous exposure to bloodborne pathogens (2 million to HBV, 0.9 million to HCV, and 170,000 to HIV).³

Bio-compatibility and indwelling time

Advanced polyurethane catheter material ensures better bio-compatibility and longer indwelling time.

Risk of NSIs and blood exposure have the potential to be greatly reduced, if not eliminated, with the advent of improved PIVC technology.

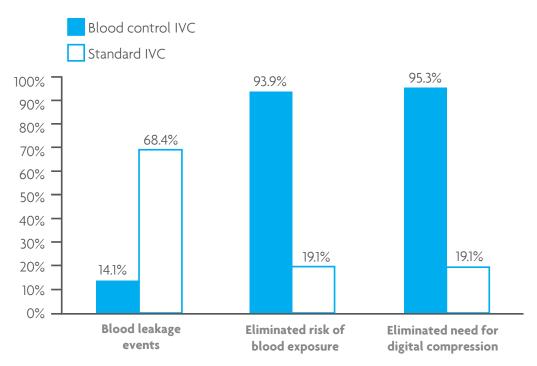
Clean access site

No venous compression is required during insertion - single handed technology provides ease of use and helps in maintaining clean access site.

SentraCath Blood Control IV Safety Cannula - integration of multiple standalone technologies

Injection port with unidirectional valve facilitates supplemental medication

User-friendly, selfactivating safety mechanism prevents needle stick injuries


Silicone septum prevents blood spillage

Quick flashback needle technology ensures successful venipuncture

Benefits of the blood control IVC, as compared with the standard PIVC system²

Instructions for use

SentraCath Blood Control IV Safety Cannula

Prepare the site for cannulation

Insert IV cannula at required angle

Observe flashback in chamber

Withdraw needle

Needle bevel is encapsulated by safety guard

Secure and clear the line

Ordering information

Size	Product code	Catheter OD (mm)	Flow rate (mL/min)	Maximum power injectable flow rate (mL/min)	Units per box	NHSSC code
18G Green	SML/1850/18/P	1.3	65	10	50	
18G Green	SML/1854/18/32	1.3	70	10	50	
20G Pink	SML/1851/20/P	1.1	47	7	50	
22G Blue	SML/1852/22/P	0.9	28	6	50	
Yellow	SML/1853/24/P	0.7	17	4	50	
Green	SML/1812/18/P	1.3	65	10	50	FSP85103
Green	SML/1813/18/P	1.3	70	10	50	FSP85116
20G Pink	SML/1814/20/P	1.1	47	7	50	FSP85102
22G Blue	SML/1815/22/P	0.9	28	6	50	FSP85114
46 Yellow	SML/1816/24/P	0.7	17	4	50	FSP85098

References

- 1. Onia, Rudy, et al. "Evaluation of a new safety peripheral IV catheter designed to reduce mucocutaneous blood exposure." Current medical research and opinion 27.7 (2011): 1339-1346.

 2. Seiberlich, Laura E., et al. "Clinical performance of a new blood control peripheral intravenous catheter: a prospective, randomized, controlled study." International emergency nursing 25 (2016): 59-64.

 3. Rapiti, Elisabetta, and Yvan JF Hutin. "Sharps Injuries: Global burden of disease from sharps injuries to health-care workers." 2003).

