

AUXILIARY | TRIPPING | SUPERVISION

Delta ARD4

Compact high performance electro-mechanical auxiliary relays for power utility protection and control applications.

- > Self-reset and latching versions
- > Less than 25ms operate time
- > Four heavy duty contacts with magnetic blowouts
- > Hand reset flag
- > Surface or rail mount
- > Flush panel or rack mount
- > Made in Australia

Functional Description

Features

- > Less than 25ms operate time
- > 4 heavy duty contacts
- > Magnetic arc blowouts standard
- > Self-reset contact version
- Latching contact version with hand and electrical reset
- > Hand-reset electro-mechanical flag
- Rated operate voltages available for 24, 30/32, 48, 110, 125, 220, 240 or 250 Volts DC nominal auxiliary supplies
- > Panel, rack or rail mount options
- > Compact size 2, 2U high case
- > Plug-in terminal block
- > M4 screw terminals
- > Relay operate LED standard

Description

The Delta ARD4 is a high performance electro-mechanical auxiliary relay for power utility protection and control applications.

The ARD4 is built on the Delta relay platform providing high performance and reliability while reducing production and supply lead times.

Application of the Delta ARD4 multi-contact auxiliary relays ensure operation in less than 25 ms.

Model Designation

DELTA ARD4 MODELS:

- > ARD4-1 Self-Reset Contacts and Hand Reset Flag
- > ARD4-4 Hand and Electrical Reset Contacts and Hand Reset Flag

Application

The Delta ARD4 relay provides a robust and reliable interface between protection and control system circuits.

A more economical alternative to traditional auxiliary relays the Delta ARD4 provides a compact, flexible and high-performance solution while meeting relevant IEC standards.

A wide voltage range and standard hand reset flag reduces the number of model variations. The Delta range is packaged in a size 2, 2U high case that may be flush panel, rack or rail mounted.

A plug-in terminal block is provided to allow panel pre-wiring.

Where more than 4 contacts are required refer to the Alpha Range Technical Bulletin.

Technical Data

Front Panel Layout

Right – rail mount

Front Panel Configuration

Delta relays can be easily converted from a rail mount to a flush mount configuration. This is achieved by un-clipping the front rail mount escutcheon, securing a metal panel mount plate with four (4) screws and clipping on a panel mount escutcheon. This process may be reversed to convert from a panel mount to a rail mount version.

Delta relays may be ordered with the desired configuration or converted by the user using one of the conversion kits listed in the ordering section.

Coil Operation LED

A front panel LED is provided to indicate when a voltage is applied to the operate coil terminals.

Contact Configuration

Self-reset contacts:	4 C/O
Latching contacts:	3 C/O + 1 N/O

Self-Reset Contacts

All contacts operate when a voltage in the specified range is applied to the relay coil and reset when this voltage is removed.

Hand and Electrical Reset Contacts

All contacts operate and mechanically latch when a voltage in the specified range is applied to the relay coil. The contacts reset when the reset button located on the front of the relay is pressed. A voltage applied to the reset coil may also be used to reset the contacts.

Care should be taken to avoid holding the Contact Hand Reset actuator in the reset position during the presence of a relay operate signal.

Hand Reset Flag

A high visibility mechanical flag drops when the contacts are first operated and remains visible until it is manually hand reset using the reset slide button located on the front of the relay. Note that this flag will only remain reset with the contacts are in the reset position.

Electrical Reset Interlock

In traditionally designed tripping relays, if the reset circuit is held energized while the relay operate input also remains energized, the relay will oscillate between the operated and reset states. The reset interlock feature eliminates this condition and protects the relay from thermal damage by locking out the reset command when a relay operate voltage is applied.

Magnetic Arc Blowouts

Magnetic arc blowouts are a standard feature on all Delta ARD4 relays. Their fitment provides greatly enhanced switching capabilities for inductive DC loads by extinguishing the electrical arcs initiated when the load is broken.

Operating Time

Make contacts:	<25 ms to first touch at nominal rated
	operating voltage.
Break contacts:	<20 ms transition

Burden

Average burden at nominal		
Operate coil	3 W maximum	
Reset coil	3 W maximum	

Pickup Operating Voltage

Guaranteed operation between 80% and 120% of nominal rated DC operating voltage.

Reset Voltage

Self-reset relays will reset at not less than 10% of nominal rated operate voltage. Reset typically occurs at 20% of nominal.

Coil Thermal Rating

All operate, reset and time delayed circuits are designed to withstand continuous application of 120% of the nominal rated voltage.

Electrical Reset

Reset voltage:	As per rated pickup voltage.
Reset cut off:	Instantaneous with main relay reset.

Contact Ratings

Contact material		Ag	
Isolation across open contacts		1 kV rms	
Make and carry		7 A all contacts 10 A any two contacts	
Peak inrush current (make and carry)		200 A for 10 ms 40 A for 0.5 s	
Peak infusit current (make and carry)		30 A for 1 s	
DC break	Resistive (DC1)	7 A / 110 V 3 A / 220 V	
capacity (rated load) Inductive (L/R = 40 ms	Inductive (L/R = 40 ms)	0.5 A / 110 V 0.15 A / 220 V	
Maximum switching voltage		250 VDC / 440 VAC	
Minimum switching voltage		12 V	
Minimum switching current		10 mA	

Terminal Block

TBD-R1 / R2	Rear connect terminal block Suitable for flush mount relay version
TBD-F	Front connect terminal block Suitable for rail mount relay version

ATMOSPHERIC ENVIRONMENT

Temperature

Standard	IEC 60068-2-1, IEC 60068-2-2	
Test Identification	Test specification Auxiliary power Supply voltage	
Operating Range	-10 to +55°C Min and Max	
Storage Range	-25 to +70°C	Non-energized
Test duration	16 hours at top and bottom temperatures	

Damp Heat (Humidity)

Standard	IEC 680068-2-78 ENA TS 48-5, Issue 3, 2010
Test Identification	Test specification
Operating Range	40°C and 93% RH non condensing
Test duration	16 hours

IP Rating

Standard	IEC 60529 ENA TS 48-5, Issue 3, 2010
Test Identification	Test specification
Installed	IP5x

MECHANICAL ENVIRONMENT

Vibration - Sinusoidal

Standard	IEC 60255-21-1 Class 1	
Test Identification	Test specification	Variation
Vibration Response in each of 3 axes	0.035 mm/0.5 gn peak 1 sweep cycle 10-150 Hz	≤5%
Vibration Endurance in each of 3 axes	1.0 gn peak 20 sweep cycles 10-150 Hz	Non- energized

Shock and Bump

Standard	IEC 60255-21-2 Class 1	
Test Identification	Test specification	Variation
Shock Response in each of 3 axes	5 gn, 11 ms, 3 pulses in each direction	≤5%
Shock Withstand in each of 3 axes	15 gn, 11 ms, 3 pulses in each direction	Non- energized
Bump Test in each of 3 axes	10 gn, 16 ms, 1000 bumps in each direction	Non- energized

Seismic

Standard	IEC 60255-21-3 Class 1	
Test Identification	Test specification	Variation
Seismic Response Horizontal, on each axis	3.5 mm/1.0 gn, 1 sweep cycle 1-35Hz	≤5%
Seismic Response Vertical	1.5 mm/0.5 gn, 1 sweep cycle 1-35Hz	≤5%

Contact Mechanical Endurance

Standard	IEC 60255-1, #6.11	
Test Identification	Repetition rate	Operations
Durability at full load	0.1 Hz maximum	>10,000
Durability at no load	0.1 Hz maximum	>100,000

ELECTRICAL ENVIRONMENT

Clearances and Creepage Distances

Standard	IEC 60255-26, #10.6.3
Test Identification	Test specification
Pollution degree	2
Overvoltage category	ш
Rated insulation voltage	300 V d.c.
Clearances and Creepage Compliance	CAD drawings assessment

Safety-related Electrical tests

Standard	IEC 60255-27, #10.6.4
Test Identification	Test specification
	5 kV 1.2/50 μs 0.5 J
Between Independent Circuits	3 pulses of each polarity
	2.0 kV ac rms for 1 minute
	5 kV 1.2/50 μs 0.5 J
Any Terminal and Earth	3 pulses of each polarity
	2.0 kV ac rms for 1 minute
Across Normally Open Contacts	1 kV ac rms for 1 min

Electrical Environment and Flammability

Standard	IEC 60255-27, #10.6.5
Test Identification	Test specification
Single-fault condition	Assessment for Opened and Closed circuit cases
Maximum temperature of accessible parts at ambient temperature +40°C	< 80°C
Flammability of insulating materials, components and fire enclosures	Assessment

Reverse Polarity and Slow Ramp Test

Standard	IEC 60255-27, #10.6.6
Test Identification	Test specification
Maximum voltage d.c.	V start-up + 20%
Minimum voltage d.c.	V shutdown - 20%
Ramp down/up gradient	1 V/min

Wiring Diagrams

ARD4-1 Self-Reset Contacts and Hand Reset Flag

ARD4-4 Hand and Electrical Reset Contacts and Hand Reset Flag

Mounting and Dimensions

19 Inch Rack Mount Rear Connect

19 inch rack mount 2U x 2U

Surface Mount Rear Connect

(TBD-R Terminal Block)

Adapter plate for 2x units in a 2U x 4U rack frame

(TBD-R Terminal Block)

Adapter plate for 4x units in a 4U x 4U rack frame

111.0				
TABLE 1 - HOI	LE DIA			
PANEL THICKNESS (T) HOLE DIA				
1mm < T < 2mm	3.6mm			
T > 2mm	3.7mm			

Surface or Rail Mount Front Connect

(TBD-F Terminal Block)

30

Panel cut-out to mount surface rear connect base

Flush panel mounting Rear connect terminal block

Panel cut-out to flush mount relay for use with rear connect TBD-R1 base

Rear connect terminal base secured to the front panel with optional retention plates - TBD-R2. Relay shown partially drawn-out of the panel.

Panel cut-out to flush mount relay for use with rear connect TBD-R2 base

Order Codes

Delta ARD4 Relay Order Code

ARD4 -			
Contact Function 1		Self-reset contacts	
4		Latching contacts with hand and electrical reset	
Nominal Operate Voltage	A	24 V dc	
	В	32 V dc	
	С	48 V dc	
	D	110 V dc	
	E	125 V dc	
	F	220 V dc	
	G	240 V dc	
	Н	250 V dc	_
Mounting Configuration	Α	Surface or rail mounting without terminal block	
	A-F	Surface or rail mounting including TBD-F terminal block	
	A-F-IP2X	Surface or rail mounting including TBD-F-IP2X terminal block	
	A-R1	Surface mount including TBD-R1 terminal block	Refer
	A-R1-IP2X	Surface mount including TBD-R1-IP2X terminal block	note 1
	В	Panel mounting without terminal block	
	B-R1	Panel mounting including TBD-R1 terminal block	
	B-R1-IP2X	Panel mounting including TBD-R1-IP2X terminal block	
	B-R2	Panel mounting including TBD-R2 terminal block	
	B-R2-IP2X	Panel mounting including TBD-R2-IP2X terminal block	

NOTE 1 The Delta relay will be supplied for mounting as per the order code specified. However, the relay mounting can be changed from DIN rail mount (Code A) to Panel Mount (Code B) or vice versa using the TBD-AC Relay Mount Conversion Kit. This provides more flexibility to manage changes at site without returning to the factory for modification. The front panel relay ID employs a # code in place of the mounting configuration code to indicate that either mounting configuration is possible. The mounting configuration code A or B is shown on the escutcheon moulding – Refer to the two alternative escutcheon examples depicted.

Refer to Appendix 1 for further detail on IP2X terminal blocks.

Order Codes

Delta Terminal Block Order Codes

Delta Accessories

Relay mount components	TBD-AC	Relay mount conversion kit (Excludes terminal block)
Panel mount frames	TBD-AD	Dual - 4U x 2U frame to rack mount 2 high x 1 wide Delta relays
	TBD-AQ	Quad - 4U x 4U frame to rack mount 2 high x 2 wide Delta relays

IP2X Terminal Options

Surface or Rail Mount Front Connect (TBD-F-IP2X Terminal Block)

Surface Mount Rear Connect (TBD-R1-IP2X Terminal Block)

Flush Panel Mount Rear Connect (TBD-R1-IP2X Terminal Block)

Flush Panel Mount Rear Connect (TBD-R2-IP2X Terminal Block)

RMS Mors Smitt 19 Southern Court Keysborough, VIC 3173, Australia Tel: +61 (0)3 8544 1200 sales.rms@wabtec.com

Wabtec Netherlands B.V. Darwinstraat 10 6718 XR Ede, Netherlands Tel: +31 (0)88 600 4500 sales.msbv@wabtec.com

Visit www.morssmitt.com/rms for the latest product information. Due to RMS continuous product improvement policy this information is subject to change without notice

AUXILIARY | TRIPPING | SUPERVISION

Delta TRD4

Compact high burden, high speed electro-mechanical tripping relays for power utility protection and control applications.

- > ANSI code 86 and 94 versions
- > Less than 10ms operate time
- > High burden operation
- > Hand reset flag
- > Surface or rail mount
- > Flush panel or rack mount
- > Made in Australia

Functional Description

Features

- > Less than 10ms operate time
- High burden operation to comply with capacitor discharge test requirements
- > 4 heavy duty contacts
- > Self-reset contact version
- Latching contact version with hand and electrical reset
- > Hand-reset electro-mechanical flag
- Rated operate voltages available for 24, 30/32, 48, 110, 125, 220, 240 or 250 Volts DC nominal auxiliary supplies
- > Panel, rack or rail mount options
- > Compact size 2, 2U high case
- > Plug-in terminal block
- > M4 screw terminals
- > Relay operate LED standard
- > Magnetic arc blowouts standard

Description

The Delta TRD4 is a high speed, high burden electro-mechanical tripping relay for power utility protection and control applications.

The TRD4 is built on the Delta relay platform providing high performance and reliability while reducing production and supply lead times.

Application of the Delta TRD4 multi-contact high-speed trip relays to ensure fast operation of less than 10 ms.

Model Designation

DELTA TRD4 MODELS:

- > TRD4-1 Self-Reset Contacts and Hand Reset Flag
- > TRD4-4 Hand and Electrical Reset Contacts and Hand Reset Flag

Application

The Delta TRD4 relay provides a robust and reliable high speed interface between the protection system and the circuit breaker.

A more economical alternative to traditional tripping relays the Delta TRD4 provides a compact, flexible and high performance solution while meeting relevant IEC standards.

A wide voltage range, high burden operation and standard hand reset flag reduces the number of model variations. The Delta range is packaged in a size 2, 2U high case that may be flush panel, rack or rail mounted.

A plug in terminal block is provided to allow panel pre-wiring.

Where more than 4 contacts are required refer to the Alpha Range Technical Bulletin.

Technical Data

Front Panel Layout

Right – Rail mount

Front Panel Configuration

Delta relays can be easily converted from a rail mount to a flush mount configuration. This is achieved by un-clipping the front rail mount escutcheon, securing a metal panel mount plate with four (4) screws and clipping on a panel mount escutcheon. This process may be reversed to convert from a panel mount to a rail mount version.

Delta relays may be ordered with the desired configuration or converted by the user using one of the conversion kits listed in the ordering section.

Coil Operation LED

A front panel LED is provided to indicate when a voltage is applied to the operate coil terminals.

Contact Configuration

Self-reset contacts:	4 C/O
Latching contacts:	3 C/O + 1 N/O

Self-Reset Contacts

All contacts operate when a voltage in the specified range is applied to the relay coil and reset when this voltage is removed.

Hand and Electrical Reset Contacts

All contacts operate and mechanically latch when a voltage in the specified range is applied to the relay coil. The contacts reset when the reset button located on the front of the relay is pressed. A voltage applied to the reset coil may also be used to reset the contacts.

Care should be taken to avoid holding the Contact Hand Reset actuator in the reset position during the presence of a relay operate signal.

Hand Reset Flag

A high visibility mechanical flag drops when the contacts are first operated and remains visible until it is manually hand reset using the reset slide button located on the front of the relay. Note that this flag will only remain reset with the contacts are in the reset position.

Electrical Reset Interlock

In traditionally designed tripping relays, if the reset circuit is held energized while the relay operate input also remains energized, the relay will oscillate between the operated and reset states. The reset interlock feature eliminates this condition and protects the relay from thermal damage by locking out the reset command when a relay operate voltage is applied.

Magnetic Arc Blowouts

Magnetic arc blowouts are a standard feature on all Delta TRD4 relays. Their fitment provides greatly enhanced switching capabilities for inductive DC loads by extinguishing the electrical arcs initiated when the load is broken.

Operating Time

Make contacts:	<10 ms to first touch at nominal rated
	operating voltage.
Break contacts:	<6 ms transition

High Burden Operation

The TRD4 tripping relay is suitable for application in high security circuit breaker tripping circuits and in particular where the initiating contact may be remote from the relay. The high burden can also be used to facilitate the satisfactory operation of external series elements. The high burden configuration provides maximum immunity to electrical disturbance and noise.

High burden tripping relays are designed to withstand the 10uF capacitor discharge test such that the relay will not operate when a 10uF capacitor charged to 120% of the nominal operating voltage is applied across the operate input of the relay.

Operating Burden

ENA TS 48-4 2016 Table 1 - High burden

Average Operate and Reset burden during pick-up at nominal		
High burden	150 W maximum	

Operated Burden

Burden after pick-up at nominal		
Self-reset relays	3 W maximum	
Latching relays: 24V dc	<0.10W	
Operate and Reset 32V dc	<0.12W	
48V dc	<0.18W	
110V dc	<0.40W	
125V dc	<0.45W	
220V dc	<0.80W	
240V dc	<0.88W	
250V dc	<0.90W	

Minimum Operating Current

High burden

50 mA minimum

Time Delayed Cut Off

Economizing delay -Operate	< 60 ms
-Reset	10-15 ms

Pickup Operating Voltage

Guaranteed operation between 70% and 120% of nominal rated DC operating voltage.

Non Operate Voltage

Non-Operating voltage for all models <55% of nominal

Reset Voltage

Self-reset relays will reset at not less than 20% of nominal rated operate voltage. Reset typically occurs at 50% of nominal.

Operation of Series Elements

External relay elements are sometimes employed for additional flagging and alarm functions. These elements are typically much slower than the primary high speed tripping relay so care must be taken to ensure reliable operation of all series element before the series trip signal is cut off or economized. The incorporation of a 50 ms time delay cut off in the TR relay provides for such circumstances.

Coil Thermal Rating

All operate, reset and time delayed circuits are designed to withstand continuous application of 120% of the nominal rated voltage.

The high speed operate coil element (150 W max.) has a thermal rating of 30 seconds, however the TRD4 tripping relays automatically economizes within 60 ms of operation to provide inherent thermal protection.

Electrical Reset

Reset voltage:	As per rated pickup voltage.
Reset cut off:	Instantaneous with main relay reset.

Contact Ratings

Contact material		Ag
Isolation across open contacts		1 kV rms
Make and carry		7 A all contacts 10 A any two contacts
Peak inrush current (make and carry)		200 A for 10 ms 40 A for 0.5 s 30 A for 1 s
DC break	Resistive (DC1)	7 A / 110 V 3 A / 220 V
capacity (rated load) Inductive (L/R	Inductive (L/R = 40 ms)	0.5 A / 110 V 0.15 A / 220 V
Maximum switching voltage		250 VDC / 440 VAC
Minimum switching voltage		12 V
Minimum switching current		10 mA

ATMOSPHERIC ENVIRONMENT

Temperature

Standard	IEC 60068-2-1, IEC 60068-2-2	
Test Identification	Test specification	Auxiliary power Supply voltage
Operating Range	-10 to +55°C	Min and Max
Storage Range	-25 to +70°C	Non-energized
Test duration	16 hours at top and bottom temperatures	

Damp Heat (Humidity)

Standard	IEC 680068-2-78
Test Identification	Test specification
Operating Range	40°C and 93% RH non condensing
Test duration	16 hours

IP Rating

Standard	IEC 60529
Test Identification	Test specification
Installed	IP5x

EMC EMISSIONS

Emission Enclosure

Standard	IEC 60255-26, #5.1		
Test Identification	Frequency range Limits, dB (µV/m)		
Radiated emission <1 GHz	30 - 230 MHz	40, quasi peak at 10 m 50, quasi peak at 3 m	
	230 - 1000 MHz	47, quasi peak at 10 m 57, quasi peak at 3 m	
Radiated emission	1 – 3 GHz	56, average 76, peak at 3 m	
>1 GHz	3 – 6 GHz	60, average 80, peak at 3 m	

ELECTRICAL ENVIRONMENT

Clearances and Creepage Distances

Standard	IEC 60255-26, #10.6.3
Test Identification	Test specification
Pollution degree	2
Overvoltage category	III
Rated insulation voltage	300 V d.c.
Clearances and Creepage Compliance	CAD drawings assessment

Safety-related Electrical Tests

Standard	IEC 60255-27, #10.6.4
Test Identification	Test specification
Between Independent Circuits	5 kV 1.2/50 μs 0.5 J 3 pulses of each polarity 2.0 kV ac rms for 1 minute
Any Terminal and Earth	5 kV 1.2/50 μs 0.5 J 3 pulses of each polarity 2.0 kV ac rms for 1 minute
Across Normally Open Contacts	1 kV ac rms for 1 min

Electrical Environment and Flammability

Standard	IEC 60255-27, #10.6.5
Test Identification	Test specification
Single-fault condition	Assessment for Opened and Closed circuit cases
Maximum temperature of accessible parts at ambient temperature +40°C	< 80°C
Flammability of insulating materials, components and fire enclosures	Assessment

Reverse Polarity and Slow Ramp Test

Standard	IEC 60255-27, #10.6.6
Test Identification	Test specification
Maximum voltage d.c.	V start-up + 20%
Minimum voltage d.c.	V shutdown - 20%
Ramp down/up gradient	1 V/min

MECHANICAL ENVIRONMENT

Vibration - Sinusoidal

Standard	IEC 60255-21-1 Class 1	
Test Identification	Test specification	Variation
Vibration Response in each of 3 axes	0.035 mm/0.5 gn peak 1 sweep cycle 10-150 Hz	≤5%
Vibration Endurance in each of 3 axes	1.0 gn peak 20 sweep cycles 10-150 Hz	Non- energized

Shock and Bump

Standard	IEC 60255-21-2 Class 1	
Test Identification	Test specification	Variation
Shock Response in each of 3 axes	5 gn, 11 ms, 3 pulses in each direction	≤5%
Shock Withstand in each of 3 axes	15 gn, 11 ms, 3 pulses in each direction	Non- energized
Bump Test in each of 3 axes	10 gn, 16 ms, 1000 bumps in each direction	Non- energized

Seismic

Standard	IEC 60255-21-3 Class 1	
Test Identification	Test specification	Variation
Seismic Response Horizontal, on each axis	3.5 mm/1.0 gn, 1 sweep cycle 1-35Hz	≤5%
Seismic Response Vertical	1.5 mm/0.5 gn, 1 sweep cycle 1-35Hz	≤5%

EMC IMMUNITY

Electrostatic Discharge (ESD)

Standard	IEC 60255-26, #7.2.3, Acceptance criterion B	
Port	Enclosure	
Test Identification	Test specification Variation	
Air Discharge	8 kV ≤5%	

Radiated Electromagnetic Field

Standard	IEC 60255-26, #7.2.4, Acceptance criterion A	
Port	Enclosure	
Test Identification	Test specification Variation	
Frequency sweep	10 V rms, 80 to 1000 MHz 1400 to 2700 MHz ≤5%	
Spot frequencies	10 V rms, 80, 160, 380, 450, 900, 1850 & 2150 MHz ≤5%	

Fast Transients (EFT)

Standard	IEC 60255-26, #7.2.5, Acceptance criterion B	
Port	Input and Output ports	
Test level	Test specification Variation	
Zone A	4 kV peak, 5/50 ns, 5 kHz ≤5%	

Slow Damped Oscillatory Wave (HFD)

Standard	IEC 60255-26, #7.2.6, Acceptance criterion B	
Port	Auxiliary power supply, Input and Output	
Test Identification	Test specification Variation	
Common Mode	1 MHz 2.5 kV peak ≤5%	
Differential Mode	1 MHz 1.0 kV peak ≤5%	

Surge

Standard	IEC 60255-26, #7.2.7, Acceptance criterion B	
Port	Auxiliary power supply, Input and Output	
Test Identification	Test specification Variation	
Line-to-earth	4 kV peak ≤10%	
Line-to-line	2 kV peak ≤10%	

Conducted Disturbance Induced by RF Fields

Standard	IEC 60255-26, #7.2.8, Acceptance criterion A	
Port	Auxiliary power supply, Input and Output	
Test Identification	Test specification Variation	
Frequency sweep	10 V rms, 0.15 to 80 MHz ≤5%	
Spot frequencies	10 V rms, 27 & 68 MHz ≤5%	

Power Frequency Magnetic Field

Standard	IEC 60255-26, #7.2.10	
Port	Enclosure only	
Test Identification	Test specification	
Continuous ≥ 60 s	30 A/m - Acceptance criterion A	
Short time 1 s to 3 s	300 A/m - Acceptance criterion B	

Capacitive Discharge Immunity

Standard	ENA TS 48-4, Issue 4, 2010	
Port	Operate port of a High Burden relay	
Test Identification	Nominal voltage	Criterion
Capacitor 10 μF charged to 120% x Vnom (275 V Maximum)	48, 110, 125, 220, 240 and 250 VDC	No mal-operation

Wiring Diagrams

TRD4-4 Hand and Electrical Reset Contacts and Hand Reset Flag

Terminal Block

TBD-R1 / R2	Rear connect terminal block Suitable for flush mount relay version
TBD-F	Front connect terminal block Suitable for rail mount relay version

Mounting and Dimensions

19 Inch Rack Mount Rear Connect

19 inch rack mount 2U x 2U

(TBD-R Terminal Block)

Adapter plate for 2x units in a 2U x 4U rack frame

Adapter plate for 4x units in a 4U x 4U rack frame

Surface Mount Rear Connect

·

(TBD-R Terminal Block)

Panel cut-out to mount surface rear connect base

T > 2mm

30

Surface or Rail Mount Front Connect

(TBD-F Terminal Block)

3.7mm

Delta TRD4/ Q / 08/11/2023 - 8/14

Flush panel mounting Rear connect terminal block

Panel cut-out to flush mount relay for use with rear connect TBD-R1 base

Rear connect terminal base secured to the front panel with optional retention plates - TBD-R2. Relay shown partially drawn-out of the panel.

Panel cut-out to flush mount relay for use with rear connect TBD-R2 base

Order Codes

Delta TRD4 Relay Order Code

TRD4 -		
Contact Function 1		Self-reset contacts
4		Latching contacts with hand and electrical reset
Nominal Operate Voltage	Α	24 V dc
	B	32 V dc
	С	48 V dc
	D	110 V dc
	E	125 V dc
	F	220 V dc
	G	240 V dc
	H	250 V dc
Mounting Configuration	Á	Surface or rail mounting without terminal block
	A-F	Surface or rail mounting including TBD-F terminal block
	A-F-IP2X	Surface or rail mounting including TBD-F-IP2X terminal block
	A-R1	Surface mount including TBD-R1 terminal block Refe
	A-R1-IP2X	Surface mount including TBD-R1-IP2X terminal block # not
	В	Panel mounting without terminal block 1
	B-R1	Panel mounting including TBD-R1 terminal block
	B-R1-IP2X	Panel mounting including TBD-R1-IP2X terminal block
	B-R2	Panel mounting including TBD-R2 terminal block
	B-R2-IP2X	Panel mounting including TBD-R2-IP2X terminal block
Options	-	None
Non Standard Parameters	-	None
	NF	No Flag (Only available for TRD4-1 self-reset relay - refer to Appendix 1

NOTE 1 The Delta relay will be supplied for mounting as per the order code specified. However, the relay mounting can be changed from DIN rail mount (Code A) to Panel Mount (Code B) or vice versa using the TBD-AC Relay Mount Conversion Kit. This provides more flexibility to manage changes at site without returning to the factory for modification. The front panel relay ID employs a # code in place of the mounting configuration code to indicate that either mounting configuration is possible. The mounting configuration code A or B is shown on the escutcheon moulding – Refer to the two alternative escutcheon examples depicted.

Refer to Appendix 2 for further detail on IP2X terminal blocks.

Order Codes

Delta Terminal Block Order Codes

TBD -		
Terminal Block Connection	F	Front connect
	F-IP2X	Front connect with IP2X covers
	R1	Rear connect
	R1-IP2X	Rear connect with IP2X covers
R2		Rear connect using terminal block retention plates
	R2-IP2X	Rear connect with IP2X covers and terminal block retention plates

Delta Accessories

Relay mount components	TBD-AC	Relay mount conversion kit (Excludes terminal block)	
Panel mount frames	TBD-AD	Dual - 4U x 2U frame to rack mount 2 high x 1 wide Delta relays	
	TBD-AQ	Q Quad - 4U x 4U frame to rack mount 2 high x 2 wide Delta relays	

NF - No Flag option example front label (Only available for TRD4-1 self-reset relay)

IP2X Terminal Options

Surface or Rail Mount Front Connect (TBD-F-IP2X Terminal Block)

Surface Mount Rear Connect (TBD-R1-IP2X Terminal Block)

Flush Panel Mount Rear Connect (TBD-R1-IP2X Terminal Block)

Flush Panel Mount Rear Connect (TBD-R2-IP2X Terminal Block)

RMS Mors Smitt 19 Southern Court Keysborough, VIC 3173, Australia Tel: +61 (0)3 8544 1200 sales.rms@wabtec.com

Wabtec Netherlands B.V. Darwinstraat 10 6718 XR Ede, Netherlands Tel: +31 (0)88 600 4500 sales.msbv@wabtec.com

Visit www.morssmitt.com/rms for the latest product information. Due to RMS continuous product improvement policy this information is subject to change without notice

AUXILIARY | TRIPPING | SUPERVISION

Delta XRD

Compact high-performance supervision relays for power utility protection and control applications.

- > Trip supply supervision
- > Trip circuit supervision
- > Supervision HEALTHY green LED
- > Hand reset alarm flag
- > Optional self-reset red alarm LED
- > Surface or rail mount
- > Flush panel or rack mount
- > Made in Australia

Functional Description

Features

- High visibility electro-mechanical flag indication drops to indicate supervision alarm condition
- > Optional low cost red LED alarm indication
- > Supervision Healthy LED
- > Two, three or four C/O alarm contacts
- Rated operate voltages available for 24, 30/32, 48, 110, 125, 220, 240 or 250 Volts DC nominal auxiliary supplies
- > Panel, rack or rail mount options
- > Compact size 2, 2U high case
- > Plug-in terminal block
- > M4 screw terminals

Model Designation

DELTA XRD MODELS:

- > XRD-4 Trip supply supervision with hand-reset mechanical flag alarm indication
- > XRD-5 Trip supply supervision with self-reset LED alarm indication
- > XRD-6 Trip circuit supervision with hand reset mechanical flag alarm indication
- > XRD-7 Trip circuit supervision with self-reset LED alarm indication

Application

The Delta XR Series Relays are low burden electro-mechanical supervision relays for application on high security tripping and auxiliary supply circuits.

The Delta XR relays have been designed to provide a balance of low burden to minimize the possibility of circuit breaker maloperation while maintaining a minimum contact whetting current to avoid nuisance alarm conditions.

A key feature of the design is a high visibility mechanical flag indicator that can only be reset under healthy supervision conditions. Versions with a self-reset alarm LED may be selected as a lower cost option. A green Healthy LED is standard. Failure of the circuit or supply being supervised will cause the main relay element to drop out, an alarm signalled via the flag or red LED and the alarm contacts to change state.

A wide voltage range and standard hand reset flag reduces the number of model variations. The Delta range is packaged in a size 2, 2U high case that may be flush panel, rack or rail mounted.

A plug in terminal block is provided to allow panel pre-wiring.

Technical Data

Front Panel Layout

Right – rail mount

Front Panel Configuration

Delta relays can be easily converted from a rail mount to a flush mount configuration. This is achieved by un-clipping the front rail mount escutcheon, securing a metal panel mount plate with four (4) screws and clipping on a panel mount escutcheon. This process may be reversed to convert from a panel mount to a rail mount version.

Delta relays may be ordered with the desired configuration or converted by the user using one of the conversion kits listed in the ordering section.

Supervision Healthy LED

A front panel green LED is provided to indicate when the supervised circuit is HEALTHY.

Alarm Contacts

All contacts operate (Pick-up), when the monitored circuit is in the HEALTHY condition. FAILURE of the supervision circuit will cause the alarm contacts to drop out.

Hand Reset Flag

A high visibility mechanical flag drops when the supervised circuit status changes from the HEALTHY to the FAIL condition. The flag can only be manually hand reset using the front panel reset slide after the supervision fail condition has been corrected.

Self-Reset Red LED Flag (XRD-5 and XRD-7 only)

A red LED is illuminated when the supervised circuit status changes from the HEALTHY to the FAIL condition. The LED will automatically extinguish after the supervision fail condition has been corrected. The front panel slide switch and mechanical flag is not fitted to XRD-5 and XRD-7 variants.

Nominal Operating Voltages

24, 32, 48, 110, 125, 220, 240 and 250V DC available.

Terminal Block

TBD-R1/R2	Rear connect terminal block Suitable for flush mount relay version
TBD-F	Front connect terminal block Suitable for rail mount relay version

Description

The XRD-4 is designed to supervise the DC auxiliary supply employed on high security protection and tripping circuits employed in high voltage power systems. The XRD-4 comprises a heavy-duty attracted armature control relay with a single operating coil and delay slug.

Under healthy conditions, the coil is energized and if the supply fails, the relay will drop out to initiate a supply fail alarm. A time delay is incorporated to avoid nuisance tripping due to switching transients.

Supervision Circuit Burden

The XRD-4 circuit design is optimized to minimize the supervision current to minimize the burden on the supervised DC supply. The maximum XRD-4 burdens are as follows:

Healthy
4.0W
5.0W
4.5W
4.5W
4.5W
5.5W
6.0W
6.0W

Thermal Rating

All circuits are designed to withstand continuous application of 120% of nominal voltage.

Operating Voltage Range

70% to 120% of nominal continuous at 25 degrees Celsius

Drop-out Voltage

The highest voltage level at which the relay will drop out and signal an alarm is 70% of nominal.

The lowest voltage level at which the relay will remain picked up is 60% of nominal. Below 60% of nominal an alarm signal condition is guaranteed.

Drop-out Time

300 to 600ms at 25 degrees Celsius

Reset

When the supervision fault is rectified the contacts will selfreset to the picked up healthy state. The mechanical flag indicator must be hand reset.

Normal Operating Conditions

AUXILIARY SUPPLY AVAILABLE

Figure 5 shows a typical DC auxiliary supply circuit with the XRD-4 employed to supervise the auxiliary supply. The blue lines depict the supervised circuits and red arrows depict the path of the supervision current with a healthy auxiliary supply applied.

Figure 5: Delta XRD-4 - Normal system condition

Abnormal Operating Condition

AUXILIARY SUPPLY FAIL - ALARM CONDITION

Figure 6 shows the XRD-4 supervision relay dropped out due to the loss of auxiliary supply. Loss of the supervision current due to a loss of the auxiliary supply for <300ms will not cause this condition. Loss of supply will cause the green HEALTHY LED to be extinguished.

An alarm is reported through the change in state of the four (4) alarm contacts and the front panel hand reset flag indicator.

Figure 6: Delta XRD-4 - Abnormal condition – Loss of supply

Description

The XRD-5 provides similar functionality to the XRD-4 described in the previous section. For technical details not found in this section, reference should be made to the XRD-4 data. Technical data specific to the XRD-5 are as follows:

Alarm Signalling

- > 2 C/O alarm contacts
- > Self-reset red alarm LED

Normal Operating Conditions

AUXILIARY SUPPLY AVAILABLE

Normal operating condition is indicated on the front panel via a green LED and the alarm contact being picked up.

Abnormal Operating Condition

AUXILIARY SUPPLY FAIL - ALARM CONDITION

The green HEALTHY LED is extinguished, the red FAIL LED illuminated and the alarm contacts drop out. These conditions will self-reset after the supervision fail condition is corrected. The front panel slide switch is not fitted to XRD versions with the LED flag option. The red FAIL LED will also be extinguished when the auxiliary supply falls below 50% of nominal.

Contact Ratings

Contact material		AgNi
Maximum switching voltage		250 V dc / 440 V ac
Minimum switching voltage		5 V
Minimum switching current		5 mA
Contact resistance		< 100 m Ω (initial)
AC brook conscitu	AC1	8 A / 250 V
AC break capacity (rated load)	AC15 (B300)	3 A / 120 V
(1.5 A / 240 V
		8 A / 24 V
DC break capacity	DC1	0.4 A / 110 V
(rated load)		0.3 A / 220 V
. ,	DC13 (R300)	0.22 A / 120 V
		0.1 A / 250 V
Max AC breaking capacity		2,000 VA

Figure: 7: XRD-5 front panel Left - Panel mount

Right - rail mount

Description

The operating element of the XRD-6 comprises two supervision elements A and B, which combine to hold in a heavy duty 3 contact attracted armature relay.

Supervision is active with the circuit breaker in the open or closed position via the "a and b" CB auxiliary contacts.

Supervision also remains active during tripping operations and irrespective of the status of the tripping relay contact

An important characteristic of the design is the low level of current required to flow through the CB coil for correct operation of the supervision scheme. A constant low supervision current is maintained irrespective of the circuit breaker open or closed position. This results in low power dissipation in the XRD-6 circuit and the circuit breaker coil which reduces the possibility of nuisance tripping.

Supervision with Circuit De-energized

CIRCUIT BREAKER OPEN AND TRIP CONTACT OPEN

Figure 8 shows a typical tripping circuit with the XRD-6 employed to supervise the circuit continuity, the circuit breaker coil and the auxiliary supply.

The blue lines depict the supervised circuits and red arrows the path of the supervision current through supervision element A with the auxiliary supply applied and the circuit breaker open.

Figure 8: Delta XRD-6 – CB open

Functional Diagrams

Figures 8 to 13 depict how the supervision elements A and B monitor circuit continuity under all conditions:

Figure 8	CB open	Trip contact open	
Figure 9	CB closing	Trip contact open	Auxiliary
Figure 10	CB closed	Trip contact open	supply
Figure 11	CB opening	Trip contact closed	available
Figure 12	CB open	Trip contact closed	
Figure 13	Alarm condition		

Supervision during Circuit Breaker Closure

CIRCUIT BREAKER CLOSING AND TRIP CONTACT OPEN

Closure of the circuit breaker could cause the supervision circuits to be interrupted for the duration of the circuit breaker operate time. During this interval a >400 ms time delay holds in the alarm relay contacts.

Figure 9 shows the loss of supervision current through both the A and B supervision elements for the duration of the circuit breaker operating period.

Figure 9: Delta XRD-6 - CB closing

Supervision with Circuit Energized

CIRCUIT BREAKER CLOSED AND TRIP CONTACT OPEN

Figure 10 shows a typical tripping circuit with the XRD-6 employed to supervise the circuit continuity, the circuit breaker coil and the auxiliary supply.

The blue lines depict the supervised circuits and red arrows the path of the supervision current through supervision element A with the auxiliary supply applied and the circuit breaker closed.

Figure 10: Delta XRD-6 – CB closed

Supervision during Circuit Breaker Operation

CIRCUIT BREAKER OPENING AND TRIP CONTACT CLOSED

Operation of the protection relay trip contact will cause the supervision circuits to be interrupted for the duration of the circuit breaker operate time. During this interval a >400ms time delay holds in the XRD-6 alarm relay contacts.

Figure 11 shows the loss of supervision current through both the A and B supervision elements for the duration of the circuit breaker operating period.

Figure 11: Delta XRD-6 - CB opening

Supervision with Circuit Tripped

CIRCUIT BREAKER OPEN AND TRIP CONTACT CLOSED

Figure 12 shows the path of the supervision current with the auxiliary supply applied and the circuit breaker in the open condition. The blue lines depict the supervised circuits and red arrows the path of the supervision current through supervision element B. Note that the supervision element A is shorted out by the closed trip relay contact. Supervision will also function with the trip relay contact reset (Open), as shown in figure 8.

Figure 12: Delta XRD-6 – CB open

Normal Operating Conditions

TRIP CIRCUIT AND AUXILIARY SUPPLY HEALTHY

Normal operating condition is indicated on the front panel via a green LED and the alarm contact being picked up.

Abnormal Conditions

- > TRIP CIRCUIT FAIL
- > TRIP SUPPLY FAIL
- > CB TRIP COIL FAIL

Under abnormal trip circuit or CB trip coil conditions, supervision elements A and B will be unable to detect supervision current. After a time delay of >400 ms the XRD-6 alarm relay will drop out and the hand reset flag activated. Under abnormal trip supply conditions, the XRD-6 alarm relay will drop out after a time delay of >200 ms. Loss of supply will cause the green HEALTHY LED to be extinguished.

Figure 13: Delta XRD-6 – Alarm condition

Trip Circuit Resistance & Supervision Current

The XRD-6 circuit design is optimized to minimize the supervision current in the CB trip coil to avoid the possibility of nuisance tripping. Combined resistance of the circuit breaker and CB trip coil must be less than the maximum tabulated below to ensure adequate supervision current flows through the XRD-6.

CB Open (52a Open and 52b Closed)			
Nominal	Maximum CB trip coil resistance (ohms)	Approximate voltage monitor equivalent resistance (ohms)	Supervision current * (mA)
24V	1K	42K	0.25-0.8
32V	2K5	56K	0.25-0.8
48V	5K	86K	0.3-0.8
110V	20K	190K	0.3-0.8
125V	23K	216K	0.3-0.8
220V	40K	378K	0.3-0.8
240V	43K	442K	0.3-0.8
250V	45K	442K	0.3-0.8

CB Closed (52a Closed and 52b Open)			
Nominal	Maximum CB trip coil resistance (ohms)	Approximate voltage monitor equivalent resistance (ohms)	Supervision current * (mA)
24V	1K	21K	0.6-1.4
32V	2K5	28K	0.6-1.4
48V	5K	43K	0.7-1.4
110V	20K	95K	0.7-1.4
125V	23K	108K	0.7-1.4
220V	40K	189K	0.7-1.4
240V	43K	221K	0.7-1.4
250V	45K	221K	0.7-1.4

Operating Voltage Range

70% to 120% of nominal continuous at 25 degrees Celsius

Drop-out Voltage

The highest voltage level at which the relay will drop out and signal an alarm is 70% of nominal.

The lowest voltage level at which the relay will remain picked up is 35% of nominal. An alarm signal condition is output for input voltages below 35% of nominal.

Drop-out Time

Trip circuit fail:	400-550 ms
Loss of supply:	200-400 ms

Trip Supply Burden

The actual operating burden is dependent on the combined circuit breaker and CB trip circuit wiring.

Alarm Circuit Burden

The maximum XRD-6 relay burdens are as follows.

Nominal	Healthy	Alarmed	Supervision
24V	4.5W	0.3W	0.05W
32V	5.0W	0.5W	0.05W
48V	4.5W	0.75W	0.08W
110V	4.5W	1.0W	0.20W
125V	4.5W	1.0W	0.25W
220V	5.5W	1.9W	0.40W
240V	5.5W	2.0W	0.40W
250V	5.5W	2.0W	0.45W

Alarm Contacts

Standard: 3 C/O

Tripping Relays

Self-reset or latching type lockout type tripping relays may be employed with the XRD-6 trip circuit supervision scheme.

Contact Ratings

XRD versions		XRD-4 and XRD-6
Contact material		Ag
Operating Voltage		Voltage free
Isolation across ope	n contacts	1 kV rms
Make and carry		7 A all contacts 10 A any two contacts
Peak inrush current		30 A for 200ms
AC break capacity (rated load)	AC1	10 A / 230 V
DC break capacity (rated load) DC1		1 A / 110 V 0.7 A / 220 V
Switching voltage: Maximum		300 V dc / 440 V ac
	Minimum	12 V
Minimum switching current		10 mA

Description

The XRD-7 provides similar functionality to the XRD-6 described in the previous section. For technical details not found in this section, reference should be made to the XRD-6 data. Technical data specific to the XRD-7 are as follows:

Alarm Signalling

- > 2 C/O alarm contacts
- > Self-reset red alarm LED

Normal Operating Conditions

TRIP CIRCUIT AND AUXILIARY SUPPLY HEALTHY

Normal operating condition is indicated on the front panel via a green LED and the alarm contact being picked up.

Abnormal Operating Condition

TRIP CIRCUIT FAIL – ALARM CONDITION

The green HEALTHY LED is extinguished, the red FAIL LED illuminated and the alarm contacts drop out. These conditions will self-reset after the supervision fail condition is corrected. The front panel slide switch is not fitted to XRD versions with the LED flag option.

TRIP SUPPLY FAIL – ALARM CONDITION

The red FAIL LED will also be extinguished when the auxiliary supply falls below 50% of nominal.

Supervision Fail

Contact Ratings

	AgNi
ltage	250 V dc / 440 V ac
ltage	5 V
rrent	5 mA
	< 100 mΩ (initial)
21	8 A / 250 V
C15 (B300)	3 A / 120 V 1.5 A / 240 V
21	8 A / 24 V 0.4 A / 110 V 0.3 A / 220 V
C13 (R300)	0.22 A / 120 V 0.1 A / 250 V
ity	2,000 VA
	tage rrent C1 C15 (B300) C1 C13 (R300)

Figure: 14: XRD-7 front panel Left – Panel mount

Right - rail mount

ATMOSPHERIC ENVIRONMENT

Temperature

Standard	IEC 60068-2-1, IEC 60068-2-2	
Test Identification	Test specification	Auxiliary power Supply voltage
Operating Range	-10 to +55°C	Min and Max
Storage Range	-25 to +70°C	Non-energized
Test duration	16 hours at top and bottom temperatures	

Damp Heat (Humidity)

Standard	IEC 680068-2-78 ENA TS 48-5, Issue 3, 2010
Test Identification	Test specification
Operating Range	40°C and 93% RH non- condensing
Test duration	16 hours

IP Rating

Standard	IEC 60529 ENA TS 48-5, Issue 3, 2010
Test Identification	Test specification
Installed	IP5x

MECHANICAL ENVIRONMENT

Vibration - Sinusoidal

Standard	IEC 60255-21-1 Class 1	
Test Identification	Test specification	Variation
Vibration Response in each of 3 axes	0.035 mm/0.5 gn peak 1 sweep cycle 10-150 Hz	≤5%
Vibration Endurance	1.0 gn peak	Non-
in each of 3 axes	20 sweep cycles 10-150 Hz	energized

Shock and Bump

Standard	IEC 60255-21-2 Class 1	
Test Identification	Test specification	Variation
Shock Response in each of 3 axes	5 gn, 11 ms, 3 pulses in each direction	≤5%
Shock Withstand in each of 3 axes	15 gn, 11 ms, 3 pulses in each direction	Non- energized
Bump Test in each of 3 axes	10 gn, 16 ms, 1,000 bumps in each direction	Non- energized

Seismic

Standard	IEC 60255-21-3 Class 1	
Test Identification	Test specification	Variation
Seismic Response Horizontal, on each axis	3.5 mm/1.0 gn, 1 sweep cycle 1-35Hz	≤5%
Seismic Response Vertical	1.5 mm/0.5 gn, 1 sweep cycle 1-35Hz	≤5%

Mechanical Characteristics

Mechanical	Resistive 8 A/ 250 V DC	> 105 evalue
life at load	L/R=40ms, 0.15 A/ 220 V DC	>10 ⁵ cycles
Max operation frequency at rated load		600 cycles /hour

Compliance Data

ELECTRICAL ENVIRONMENT

Clearances and Creepage Distances

Standard	IEC 60255-26, #10.6.3
Test Identification	Test specification
Pollution degree	2
Overvoltage category	III
Rated insulation voltage	300 V rms or d.c.
Clearances and Creepage	CAD drawings assessment
Compliance	CAD drawings assessment

Safety-related Electrical Tests

Standard	IEC 60255-27, #10.6.4
Test Identification	Test specification
Between Independent Circuits	5 kV 1.2/50 μs 0.5 J 3 pulses of each polarity 2.0 kV ac rms for 1 minute
Any Terminal and Earth	5 kV 1.2/50 μs 0.5 J 3 pulses of each polarity 2.0 kV ac rms for 1 minute
Across Normally Open Contacts	1 kV ac rms for 1 minute

Electrical Environment and Flammability

Standard	IEC 60255-27, #10.6.5
Test Identification	Test specification
Single-fault condition	Assessment for Opened and Closed-circuit cases
Single-fault condition	Assessment
Maximum temperature of accessible parts at ambient temperature +40°C	< 80°C
Flammability of insulating materials, components and fire enclosures	Assessment

Reverse Polarity and Slow Ramp Test

Standard	IEC 60255-27, #10.6.6
Test Identification	Test specification
Maximum voltage d.c.	V start-up + 20%
Minimum voltage d.c.	V shutdown - 20%
Ramp down/up gradient	1 V/min

ELECTROMAGNETIC COMPATIBILITY (EMC)

IMMUNITY

Electrostatic Discharge (ESD)

Standard	IEC 60255-26, #7.2.3, Acceptance criterion B	
Port	Enclosure	
Test Identification	Test specification	Variation
Air Discharge	8 kV	≤5%

Radiated Electromagnetic Field

Standard	IEC 60255-26, #7.2.4, Acceptance criterion A	
Port	Enclosure	
Test Identification	Test specification	Variation
Frequency sweep	10 V rms, 80 to 1000 MHz 1,400 to 2,700 MHz	≤5%
Spot frequencies	10 V rms, 80, 160, 380, 450, 900, 1,850 and 2,150 MHz	≤5%

Fast Transients (EFT)

Standard	IEC 60255-26, #7.2.5, Acceptance criterion B	
Port	Input and Output ports	
Test level	Test specification	Variation
Zone A	4 kV peak, 5/50 ns, 5 kHz	≤5%

Slow Damped Oscillatory Wave (HFD)

Standard	IEC 60255-26, #7.2.6, Acceptance criterion B	
Port	Auxiliary Power Supply, Input and Output	
Test Identification	Test specification Variatio	
Common Mode	1 MHz 2.5 kV peak ≤5%	
Differential Mode	1 MHz 1.0 kV peak	≤5%

Surge

Standard	IEC 60255-26, #7.2.7, Acceptance criterion B	
Port	Auxiliary Power Supply, Input and Output	
Test Identification	Test specification	Variation
Line-to-earth	4 kV peak	≤10%
Line-to-line	2 kV peak	≤10%

Conducted Disturbance Induced by RF Fields

Standard	IEC 60255-26, #7.2.8, Acceptance criterion A		
Port	Auxiliary Power Supply, Input and Output		
Test Identification	Test specification	Variation	
Frequency sweep	10 V rms, 0.15 to 80 MHz	≤5%	
Spot frequencies	10 V rms, 27 & 68 MHz	≤5%	

Power Frequency Magnetic Field

Standard	IEC 60255-26, #7.2.10
Port	Enclosure only
Test Identification	Test specification
Continuous ≥ 60 s	30 A/m - Acceptance criterion A
Short time 1 s to 3 s	300 A/m - Acceptance criterion B

Wiring Diagrams

DC Supply Supervision XRD-4

DC Supply Supervision XRD-5

Trip Circuit Supervision XRD-6

Wiring Diagrams

XRD-7 Trip Circuit Supervision

Wiring Notes

Relays are shown in the non-powered (Alarm) condition.

Note the connection polarity for correct DC operation.

A wiring diagram is also printed on the front panel of the relay module for easy reference in the field.

Mounting and Dimensions

19 Inch Rack Mount Rear Connect

19 inch rack mount 2U x 2U

Surface Mount Rear Connect

(TBD-R Terminal Block)

Adapter plate for 2x units in a 2U x 4U rack frame

(TBD-R Terminal Block)

Adapter plate for 4x units in a 4U x 4U rack frame

TABLE 1 - HOLE DIA		
PANEL THICKNESS (T)	HOLE DIA (Ø)	
1mm < T < 2mm	3.6mm	
T > 2mm	3.7mm	

Surface or Rail Mount Front Connect

(TBD-F Terminal Block)

Panel cut-out to mount surface rear

connect base

30

Delta XRD/ M / 22/08/2023 - 16/21

Flush panel mounting Rear connect terminal block

Panel cut-out to flush mount relay for use with rear connect TBD-R1 base

Rear connect terminal base secured to the front panel with optional retention plates - TBD-R2. Relay shown partially drawn-out of the panel.

Panel cut-out to flush mount relay for use with rear connect TBD-R2 base

Order Codes

Delta XRD Relay Order Codes

XRD -				
Supervision Function 4		Trip supply supervision and hand-reset mechanical flag alarm		
5		Trip supply supervision with self-reset LED alarm		
6		Trip circuit supervision with hand reset mechanical flag alarm		
7		Trip circuit supervision with self-reset LED alarm		
Nominal Operate Voltage		24 V dc		
E		32 V dc		
		48 V dc		
		110 V dc		
E		125 V dc		
F		220 V dc		
		240 V dc		
		250 V dc		
Mounting Configuration	Α	Surface or rail mounting without terminal block		
	A-F	Surface or rail mounting including TBD-F terminal block		
	A-F-IP2X	Surface or rail mounting including TBD-F-IP2X terminal block		
	A-R1	Surface mount including TBD-R1 terminal block		5.6
	A-R1-IP2X	Surface mount including TBD-R1-IP2X terminal block	#	Refer note
	В	Panel mounting without terminal block	#	1
	B-R1	Panel mounting including TBD-R1 terminal block		_
	B-R1-IP2X	Panel mounting including TBD-R1-IP2X terminal block		
	B-R2	Panel mounting including TBD-R2 terminal block		
	B-R2-IP2X	Panel mounting including TBD-R2-IP2X terminal block		

NOTE 1 The Delta relay will be supplied for mounting as per the order code specified. However, the relay mounting can be changed from DIN rail mount (Code A) to Panel Mount (Code B) or vice versa using the TBD-AC Relay Mount Conversion Kit. This provides more flexibility to manage changes at site without returning to the factory for modification. The front panel relay ID employs a # code in place of the mounting configuration code to indicate that either mounting configuration is possible. The mounting configuration code A or B is shown on the escutcheon moulding – Refer to the two alternative TRD4-1D# escutcheon examples depicted.

Refer to Appendix 1 for further detail on IP2X terminal blocks.

Order Codes

Delta Terminal Block Order Codes

Delta Accessories

Relay mount components	TBD-AC	Relay mount conversion kit (Excludes terminal block)
Panel mount frames	TBD-AD	Dual - 4U x 2U frame to rack mount 2 high x 1 wide Delta relays
	TBD-AQ	Quad - 4U x 4U frame to rack mount 2 high x 2 wide Delta relays

IP2X Terminal Options

Surface or Rail Mount Front Connect (TBD-F-IP2X Terminal Block)

Surface Mount Rear Connect (TBD-R1-IP2X Terminal Block)

Flush Panel Mount Rear Connect

Flush Panel Mount Rear Connect (TBD-R1-IP2X Terminal Block)

(TBD-R2-IP2X Terminal Block)

RMS Mors Smitt 19 Southern Court Keysborough, VIC 3173, Australia Tel: +61 (0)3 8544 1200 sales.rms@wabtec.com

Wabtec Netherlands B.V. Darwinstraat 10 6718 XR Ede, Netherlands Tel: +31 (0)88 600 4500 sales.msbv@wabtec.com

Visit www.morssmitt.com/rms for the latest product information. Due to RMS continuous product improvement policy this information is subject to change without notice