

ALFA Seal

NATEP: Helping SMEs Innovate in Aerospace

May 2021 - Oct 2022

www.alfaseal.org

ALFA Seal - Advanced Laminar Flow snAp-fit Seal

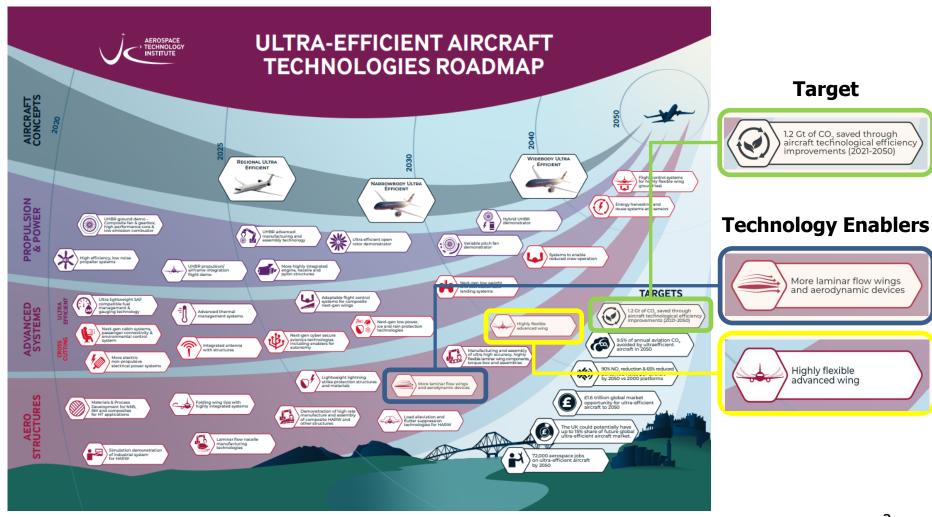
Lead Partner

- ➤ Bristol UK based R&D SME
- ➤ 30 years in the Aerospace Industry
- > Structures / Design / Certification / Testing Stress Consultancy
- ➤ Laminar Flow Enabling Technologies 10 years involvement in Low Drag Aircraft, ALFET Project (TSB-IUK) with Airbus, GKN, NCC, MTC, City University of London, Imperial College London
- ➤ Snap Fit Seal Technology (granted IP)

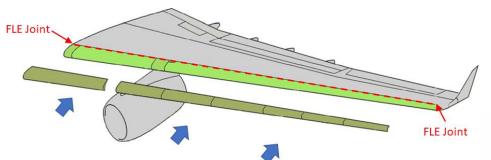
Research Partner

Transonic Wind Tunnel Facility, part of the UK National Wind Tunnel Facility (NWTF)

Industrial Partners

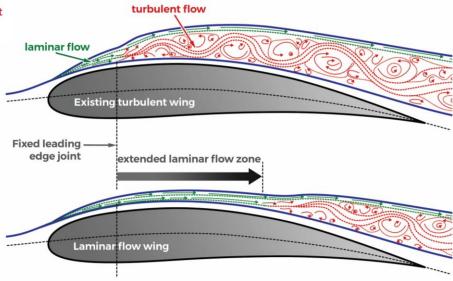


Early End User Engagement



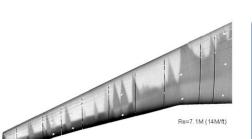
Aerospace Seal Manufacturer

ATI Destination Zero Strategy: 2050

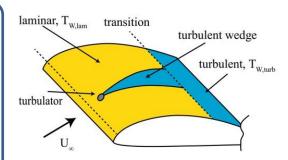


Project Objectives - NLF/HLF Enablers

The Fixed Leading Edge (FLE) joint (as a flow disturbance) is a significant threat to maintaining laminar flow across the rest of the wing chord


- Progress the Snap-Fit Seal system from TRL 2/3 to TRL 4
- Contribute a technology enabler for 7% drag reduction (versus a turbulent winged aircraft), equating to a potential 5% fuel saving (Airbus UK)
- Traditional sealant not compatible with Laminar Flow ambitions/Advanced High-Flexure wing structures
- Non-funded project partners Airbus
 UK & Meggitt Seals

A laminar-flow-friendly FLE joint is a key technology enabler for drag reduction


4

Challenge - Enabling Laminar Flow across joints

Advanced Wings

- More aerodynamic/efficient, Laminar Flow enabled
 - Managing steps & gaps at joints
- Highly Flexible to accommodate
 - dry wings
 - next generation propulsion

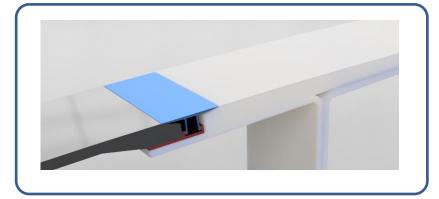
Sealant

- Swelling
- Dishing
- Peeling

Poor Aerodynamic performance of aging sealant

- Costly maintenance & repairs
- Low tolerance to high wing flexure/compliance with joined parts

ALFA Seal


Patented Technology - GB2545153

- Laminar Flow Compatible (step & gaps aero requirements)
- Accommodates high wing flexure by design

5

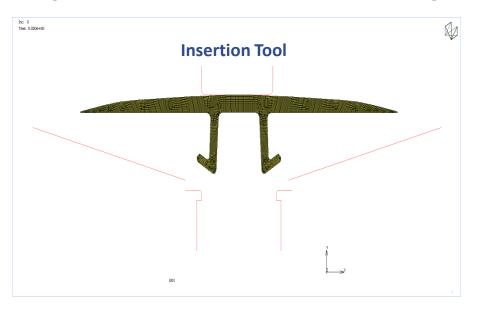
Wing Integration

Gap Bridging

Materials & Manufacturing

- > Insert
- Plastic (PEEK)
- ContinuousCompression Molding
- Receptacle
- Metallic/Plastic
- Extrusion

Fastener Concealment


Key Features

- > Removeable/replaceable insert (operability)
- > Pre-cambered design (flat when installed & pre-loaded)
- > Receptacle is located via:
 - > Fastener positions
 - ➤ Single panel landing "A" surface
- ➤ Insert flexibility & pre-load accommodates:
 - > Tolerances: manufacturing, assembly
 - Operational conditions pressure, temperature, wing bending strains & deflections

6

Jigsaw - Seal Mechanical Analysis & Simulation

Snap-fit Non-Linear Finite Element Analysis

- End-user requirements (NLF/HLF laminar flow)
 - aero (step heights/waviness)
 - structural (pressures/thermal/wingbend)
 - manufacturing (tolerances/roughness)

Flexural

Strength Modulus Strength Modulus Transition

Flexural

Glass

Max Op

Density

- materials
- Insert pre-load:

Manufacturing

> Seal strength & stiffness

Tensile

- Sealing performance
- Moisture ingress management

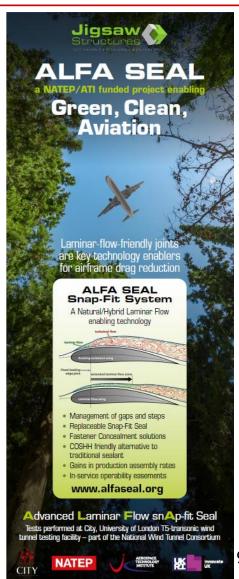
							Process	(MPa)	(GPa)	(MPa)	(GPa)	(dogC)	(dog C)	(g/cm3)
V: ASFA Pacametric Study 1								(IVIPa)	(GPa)	(IVIPa)	(GPa)	(degC)	(deg.C)	
						VICTREX™ PEEK 450G	Injection Molding	98	4.0	125	3.8	143		1.3
**	11	1.5	1.	71.01	Insert	TECAPEEK	CNC	96	3.6	191	6.6		250	1.4
				88,68		TECAPEEK CF30	CNC	208	13.0	318	13.0		250	1.5
**				10.4	Recep*	AlSi10Mg Aluminium	3D Printing	345	70.0	345	70.0		350	2.7
	1	1		- T		Ceramic-Like	3D Printing	70	10.0	70	10.0			1.6
200				91,01		ABS Carbon - RPU 70	3D Printing	40	1.7	55	1.5			1.1
T				7		Nylon PA12 40% GF	3D Printing	30	2.9	30	2.9			1.3
1774					Insert	Nylon PA12	3D Printing	50	2.0	50	2.0			1.0
1						Nylon Tecamid GF30	Injection Molding	90	5.5	135	4.7		110	1.3
1				*111		Nylon Zytel 70G33HS1L	Injection Molding	200	9.0	275	9.0			1.4
Output Set: Fre-Loud - 2.5em Garp				Allenia -										

^{*} Aluminium available for CNC

City, University of London – Wind Tunnel & Mechanical Testing

Seal Pre-load Characteristics

Aerodynamic & Sealing Performance


Bespoke Test Setup:

- T5 Transonic Wind Tunnel (NWTF)
- Ultimate & Cruise pressure differential
- Controlled seal pre-load
- Seal seating adjustability

Exploitation & Dissemination

- Jigsaw and City, University of London continue to work closely with our primary ALFA Seal project end users – Airbus UK & Meggitt Seals
- □ ALFA Seal exhibited at the FAC Annual Conference in November
- ☐ The ALFA Seal project will be represented at the Farnborough International Airshow 2022 as part of City's/FAC's exhibition space
- ☐ The Jigsaw snap-fit seal system has been granted patent status (GB2545153, April 2020) and as such, associated use cases can be readily exploited and are free from competitor restrictions
- Contact: <u>www.alfaseal.org</u>

ALFA Seal

Thank you

(Images courtesy of Airbus Media)