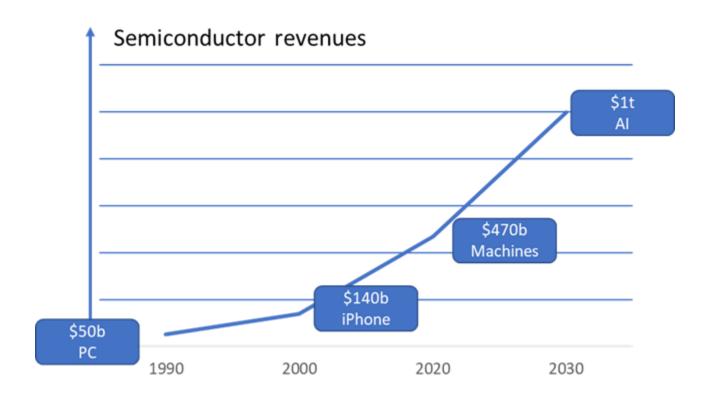


Building resilient semiconductor supply chains

Dr Andy G Sellars
Manufacturing and Engineering Week
9 June 2022

UK semiconductor consultation



<u>Parliamentlive.tv - Business, Energy and Industrial Strategy</u> <u>Committee</u>

<u>The Semiconductor Industry in the UK - Committees - UK</u>
<u>Parliament</u>

Deadline: 14 June 2022

Exponential growth

Timeline

National semiconductor strategy Consultations with 200 companies, 50 universities

Technology Strategy Board
Driving Innovation

Compound Semiconductors: market analysis and UK capability

Myrddin Jones, Lead Technologist Paul Mason, Head of Development Steph Morris, Lead Specialist Andy Sellars, Lead Technologist 19th August 2014

Innovate UK

Compound Semiconductor Consultation Workshop Birmingham, 2nd June 2015

Andy Sellars, Lead Technologist, High Value Manufacturing andy.sellars@innovateuk.gov.uk
@hi_tech_uk

Business case to HM Treasury

Compound Semiconductor Applications Catapult Technology Scotland, 4th May 2016

Andy Sellars, MBA, PhD, MSc Lead Technologist, Manufacturing & Materials andy.sellars@innovateuk.gov.uk @andy_g_sellars

Innovate <u>UK</u>

Chancellor's announcement

Property search

2013

2014

2015

2016

2017

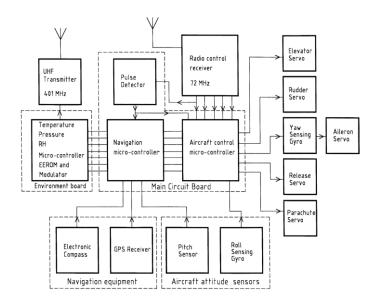
Prime Minister's roundtable on electric vehicles

State of the art facilities

Official opening Royal Society

International partnership with ITRI, Taiwan

Driving Electric Revolution Industrialisation Centre


2018 > 2019

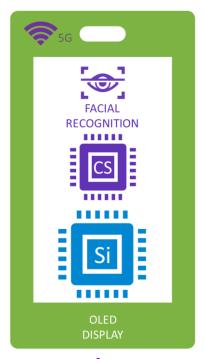
2020

2021

2022

Electronic systems

Electronic system	Biologic equivalent
Microcontroller / microprocessor	Brain
Memory	Memory (part of the brain)
Software	Neuron interconnect
Sensor(s)	Eyes, ears, tongue, etc
Servo	Arms, legs, etc
Transmitter / receiver	Vocal chords / ears
Battery	Muscles / body fat



Semiconductors – segmented by material

Silicon (Si) semiconductors	Compound semiconductors (CS)	Other semiconductors
		(2D, organic, thin film)
Discrete transistors	Power transistors (MOSFETs etc)	Displays (laptop, phone)
Logic	RF amplifiers	Solar panels (perovskites)
Amplifiers	Lasers	Novel flexible microprocessor demonstrated by
Microcontrollers /	Imaging	ARM/PragmatIC <u>Flexible Processors? Arm and</u> PragmatIC Push Flexible Electronics Up A Level
microprocessors	Single photon sources (quantum)	- News (allaboutcircuits.com)
Mixed signal	Single photon detectors (quantum)	Novel sensors (graphene)

Electronic systems

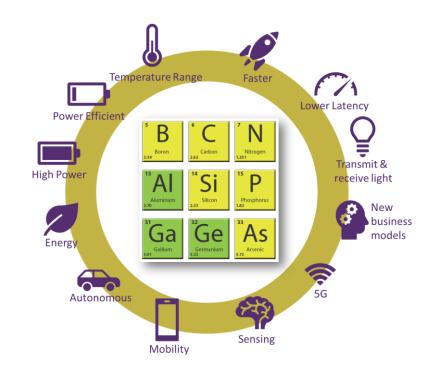
- Silicon (Si): main functions, typically 70-80% of semiconductor value
- Compound (CS): specialist functions, typically 10-20% of semiconductor value
- Other (OLED): display functions, typically 5-10% of semiconductor value

Examples

Product	Manufacturing cost	Semiconductor value	Si (%)	CS (%)	Other (%)
iPhone	\$570	\$350	80%	10%	10%
Tesla powertrain	\$3,900	\$1,950	20%	65%	5%
Data centre server	?	\$5,600	90%	>5%	<5%

Apple iPhone 13 Pro Teardown | TechInsights
PowerPoint Presentation (cargroup.org)
PowerPoint Presentation (appliedmaterials.com)

Silicon semiconductors – segmented by lithography


Category	Lithography or node	Typical chips	Cost to build a fab
	(smallest transistor)		
Legacy Introduced before 2000	> 90nm Up to 10m transistors per chip	From single discrete transistors that switch power to complex chips with millions of transistors capable of running basic software	< £100m
Mainstream Introduced between 2000 and 2010	28nm – 90nm Up to 1bn transistors per chip	Highly functional chips capable of processing complex signals and running complex software	£200m – £1bn
Leading edge Introduced after 2010	< 28nm Up to 100bn transistors per chip	Extremely complex chips that may combine multiple mainstream chips in one device, capable of running complex software	\$5bn — \$20bn

Lithography refers to the dimension of the transistor, which is the building block of electronics. Transistor dimensions are measured in nanometres (nm). As the lithography size decreases, more transistors can be fabricated on a chip, creating more functionality on the chip.

Silicon vs compound semiconductor chemistry

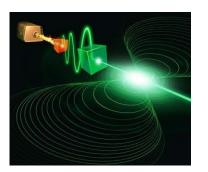
Туре	First element	Second element
Binary III-V (most important)	Group III (aluminium, boron, gallium and indium)	Group V (antimony, arsenic, nitrogen, phosphorous)
Binary II-VI	Group II (cadmium and zinc)	Group VI (oxygen, sulphur, selenium and tellurium)
Binary IV-VI	Group IV (lead and tin)	Group VI (sulphur, selenium and tellurium)
Binary V-VI	Group V (bismuth)	Group VI (tellurium)
Binary II-V	Group II (cadmium, zinc)	Group V (antimony, arsenic and phosphorous)

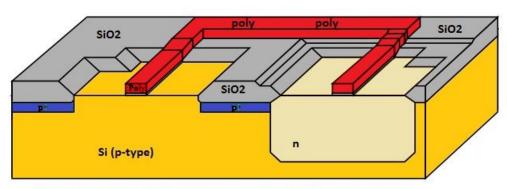
- Silicon is a single element: possible to make large, very pure wafers
- CS are a combination of 2 or more elements: more difficult to control

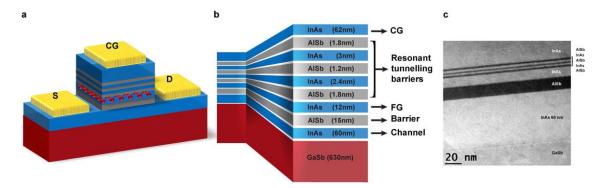
Compound semiconductors outperform silicon in 3 areas

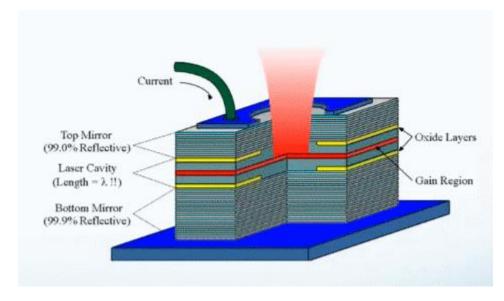
Power: electric vehicles, smart grids Eg GaN and SiC

Speed: satellite communications & 5G Eg GaAs and GaAs




Light: quantum, imaging Eg InP and CdT




Silicon vs compound semiconductor processing

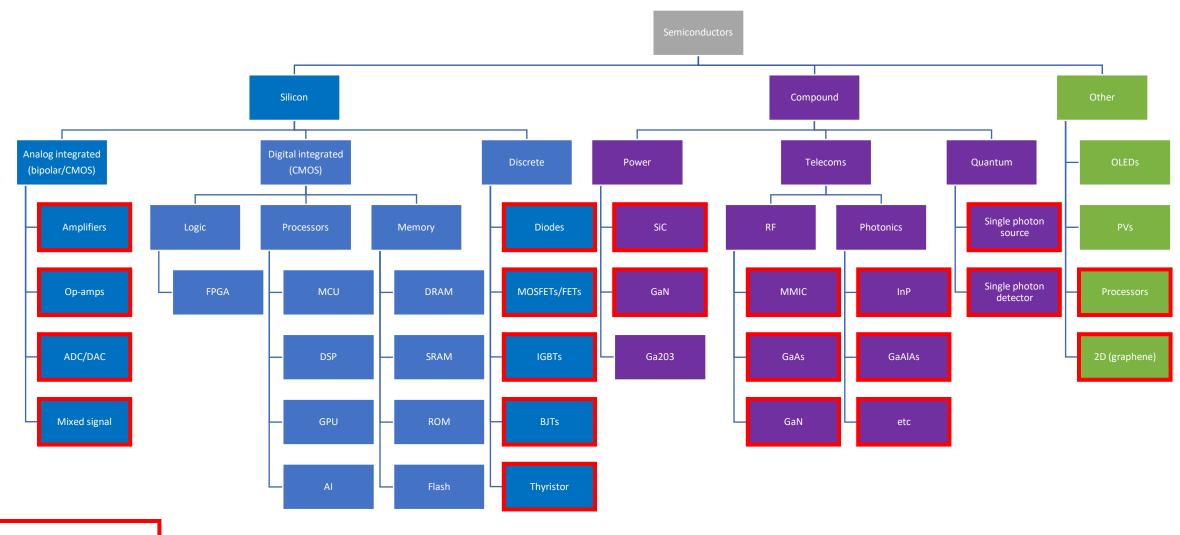
3D view of the Silicon Wafer after depositing the Poly layer. There are 2 Active Region (For PMOS and NMOS), Isolation Region (which consists Field Oxide), Gate Oxide and Poly layer.

Silicon processing tends to be planar / lateral: up to 60 billion transistors per chip

CS processing tends to be 3D: single or few special function devices (eg lasers) per chip

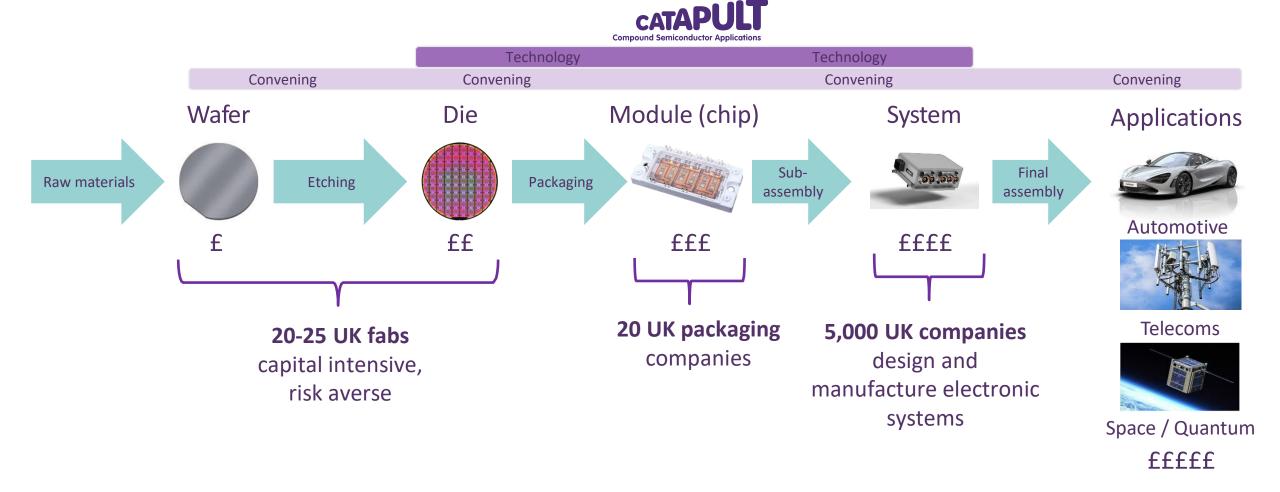
Compound semiconductors – segmented by application

Category	Typical chips	Typical applications
Power	Single power transistors or arrays of	Used for power electronics in electric
(eg GaN or SiC)	power transistors	vehicles and smart grids
Speed	High frequency amplifier chips	Used to generate radio frequency (RF)
(eg GaN or GaAs)		signals for 5G, satellite communications and defence applications such as RADAR
Light (eg InP or GaAs)	Lasers, sensors, photon sources and detectors	Optical communications, missile guidance and quantum applications



'Other' semiconductors – segmented by application

Material / technology	Typical chips	Typical applications
OLED and AMOLED	Large area displays	Displays for laptops, smart phones and smart TVs
Perovskite	Large area solar panels	Solar panels
Thin film	Flexible computer chips – lower cost than silicon but limited functionality compared with silicon	Low-cost labelling of consumer products
2D (eg graphene)	Sensors	High precision monitoring in harsh environments such as nuclear reactors or CERN

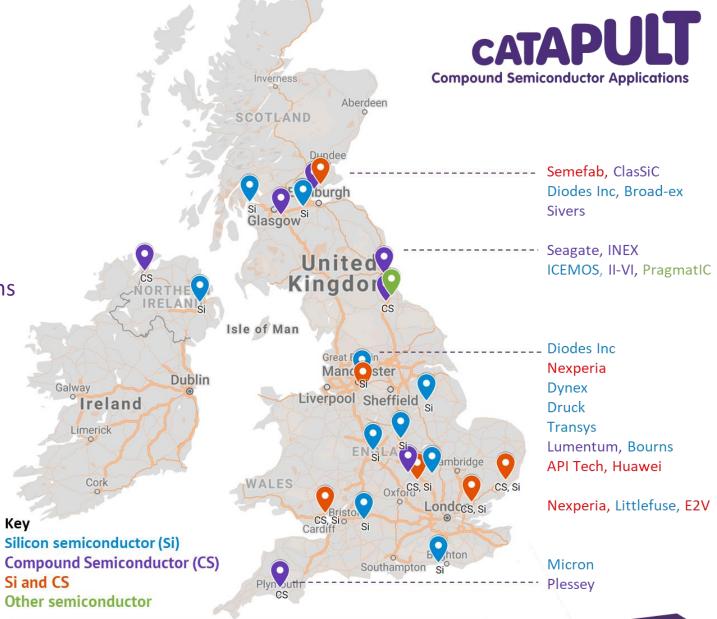

Semiconductor taxonomy

UK fabrication capability

Semiconductor supply chains

UK fab capability

Business models:


1 Integrated device manufacture (IDM)

- Research chip design and manufacturing process
- Manufacture 'badged' chips
- Eg Intel, Samsung, AMD

2 Open foundry

- Research manufacturing process
- Offer 'process design kit' (PDK) for 3rd party designs
- Manufacture chips to order, sell capacity
- Eg TSMC, Samsung

Trend: from IDM to open foundry

UK packaging capability

Packaging functions

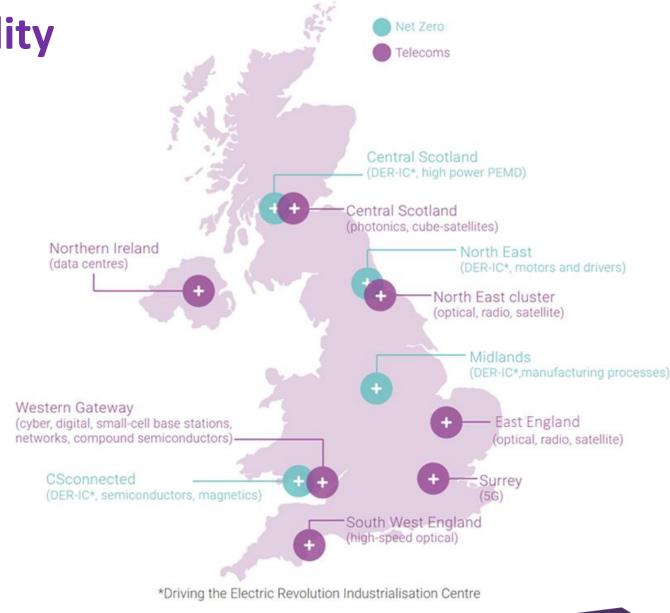
- Attaching electrical connections to semiconductor die (to be fitted to a printed circuit board PCB)
- Attaching die directly to a PCB
- Hybrid packaging: integrating semiconductor die with passive components to create a hybrid module
- Heterogeneous integration: integrating compound semiconductor
 'chiplets' with silicon 'chiplets' to create a highly functional module
- Photonic packaging: aligning optical fibres or light guides with a photonic semiconductor, such as a laser or a detector, to create a photonic module
- RF packaging: coupling RF output to an antenna or array (eg metamaterial) to radiate the RF signal

UK system integration capability

Vehicle electrification (Net Zero)

Quantum

Telecoms

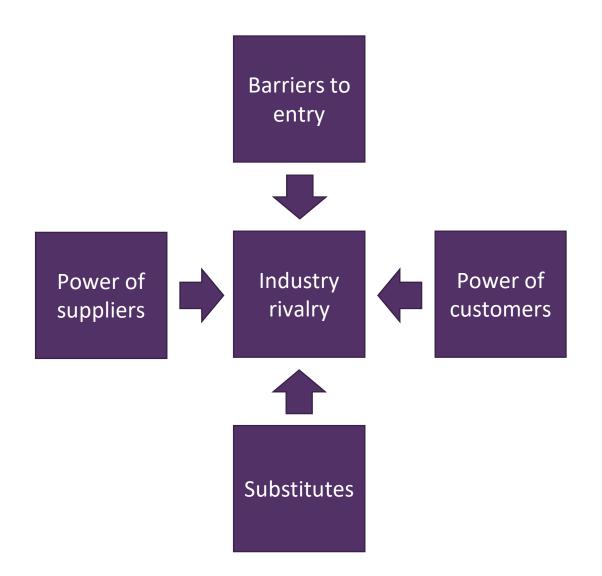

Smart energy grids (Net Zero)

Space

Defence

Silicon fabrication costs

Year	Node	Silicon	mask cos	rtc							No. transistors	Application
2020	5nm	Silicon	IIIask Cos) LS							59 billion	GraphCore AI
2018	7nm										7 billion	Apple A12
2017	10nm									\$6-9m		
2014	16nm								\$2.5-4m	\$2.5-4m		
2013	20/22nm										1 billion	Apple A7
2010	28nm						\$1.5-3m	\$1.5-3m	\$1.5-3m	\$1.5-3m		
2008	40nm			\$0.9-2m	47 million	Intel Atom						
2006	55/65nm			\$0.5-1.5m								
2003	80/90nm			\$0.3-1m								
2003	110/130nm	\$0.2-0.5m	\$0.2-0.5m		\$0.2-0.5m	\$0.2-0.5m	\$0.2-0.5m	\$0.2-0.5m	\$0.2-0.5m	\$0.2-0.5m		
2000	150/180nm	\$200k	\$200k		\$200k	\$200k	\$200k	\$200k	\$200k	\$200k		
1997	250nm											
1995	350nm										5.5 million	Pentium Pro
1992	500nm											
		POWER	MEMs	DRAM	IMAGE	HIGH	FLASH	RF	ANALOG	LOGIC		
					SENSORS	VOLTAGE						
	leading edge											
	mainstream											
	legacy											


The Economics of ASICs: At What Point Does a Custom SoC Become Viable? | Electronic Design

5 nm process - Wikipedia

Strategic advantage

- A company (or country) has a strategic advantage if it creates the conditions to secure success in a market (or non-market sector such as defence) in the medium to long term
- A technology or material confers strategic advantage if it is essential to achieving success in a market (or nonmarket sector), and there are no alternatives available

Porter's five forces analysis - Wikipedia

UK silicon capability

Silicon category	Device / application	UK R&D	UK design	UK fabrication	Strategic advantage
> 90nm	Logic, analog, MCU, MOSFET, diode, IGBT, FLASH	High	Medium: including design houses	High: some fabs capable of 1bn devices / year	Medium: alternatives available
Mainstream 28 to 90nm	MCU, DSP, FPGA, RAM	Medium: university research	High: good MCU and ASIC design	None	High: critical to all electronic products
Leading edge < 28nm	GPU, AI, IPU, FPGA	Medium: university research	High: world leading MCU design	None	High: critical to advanced electronic products

UK compound semiconductor capability

Compound semiconductor category	Device / application	UK R&D	UK design	UK fabrication	Strategic advantage
Power electronics	MOSFETs for	High: over £300m	High: start-ups,	Medium: mix of low-	High: critical to Net
	electric	invested by EPSRC	SMEs and larger	scale and medium-	Zero
	propulsion	since 2006	companies	scale production	
RF/ microwave	RF amplifiers	High: over £300m	High: many SMEs	Medium: low-scale	High: critical to
	for 5G /	invested by EPSRC	and a few larger	production	telecoms and
	RADAR	since 2006	companies		defence
Photonics /	Lasers +	High: over £400m	High: many SMEs	Medium: high-scale	High: critical to
quantum	detector for	invested by EPSRC	and a few large	wafer production	telecoms, quantum
	optical	since 2006	companies	but off-shored	and defence
	comms			packaging	

UK 'other' semiconductor capability

Other category	Device / application	UK R&D capability	UK design	UK fabrication	Strategic advantage
OLED	Displays	Low	Medium	None	Low: alternatives
					available
Perovskites	Solar cells	High: good	Medium	None	Low: alternatives
		research at a few			available
		universities			
Thin film	Flexible	High: leading	High: supported	High: world leading	Medium: potentially
	MCU	university research	by silicon design	thin film fabrication	disruptive
			ecosystem		technology
2D	Sensors	High: graphene and	High: mostly	High: early stage	Medium: potentially
		other 2D materials	start-ups as it's an	companies	disruptive
			emerging		technology
			technology		

Integrated Review framework

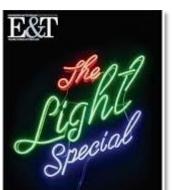
Category	Definition
OWN	Where the UK has leadership and ownership of new developments,
	from discovery to large-scale manufacture and commercialisation. This
	will always involve elements of collaboration and access.
ACCESS	Where the UK can provide unique contributions that allow us to
	collaborate with others to achieve our goals.
COLLABORATE	Where the UK will seek to acquire critical S&T from elsewhere, through
	options, deals and relationships.

Conclusions: submission deadline 14 June 2022

<u>The Semiconductor Industry in the UK - Committees - UK</u>
<u>Parliament</u>

Deadline: 14 June 2022

Thought leadership, click to view...



In the news, click to view...

26 Mar 2020

3 Nov 2020

27 Nov 2020

9 Dec 2020

29 Mar 2021

7 Sep 2021

30 Aug 2021

Dr Andy G Sellars andy.sellars@csa.catapult.org.uk @andy_g_sellars 07931 533 855

Tel: 01633 373121

Email: info@csa.catapult.org.uk

Twitter: @CSACatapult

Website: www.csa.catapult.org.uk

The CSA Catapult is a member of CS-Connected – the South Wales compound semiconductor cluster

www.csconnected.com

