
WHITE PAPER

Trim Command -
General Benefits for
Hard Disk Drives

Author | Wes McMillen, Western Digital Corporation

WHITE PAPER JUNE 2020

WHITE PAPER

2

Contents
Introduction …………………………………………………… 2

Trim Scenarios ………………………………………………… 2

HDD Initialization ……………………………………… 2

Opening of an Allocation Unit …………………… 2

Benefits for an SMR Drive ………………………… 3

RAID Rebuild ……………………………………………… 3

Trim Implementation ………………………………………… 4

Overview …………………………………………………… 4

Error Handling …………………………………………… 4

Identify Device ………………………………………… 4

Data Set Management XL ………………………… 5

Sample Source Code …………………………………… 6

Introduction
The purpose of a trim command is to allow the host to provide LBA/data usage
information that allows the storage device to become more performant. The trim
command provides input from the host to let the device know what sectors can be
unmapped from the device because they are no longer needed by the host.

Un-mapping sectors of an allocation unit in advance of usage, via the trim command, will
reduce the need for garbage collection in the future. This background garbage collection
activity will cause additional media bandwidth to be consumed and may decrease the
responsiveness of the device. Limiting garbage collection to a minimum allows the
device to remain responsive and performant. If the device needs less media bandwidth
for garbage collection, then more media bandwidth can be provided to the host system.

It is in the best interest of the host and device to limit the necessity for garbage
collection. Executing the trim command during opportune scenarios allows for additional
host features such as additional cameras, auxiliary streams, picture streams, and playback

streams.

Requested Trim Scenarios

HDD Initialization
Western Digital requests the host execute a TRIM across the entire range of the drive
using the DATA SET MANGEMENT XL’s TRIM operation when the system is going through
an HDD initialization operation.

This step will remove all mapped sectors from the device and give the user a brand
new, performant state for initial use. This step is critical if the user reuses a drive that
was previously in an overstressed environment where its performance may have been
degraded. The TRIM operation will reset and re-initialize the drive to a clean state.

Opening of an Allocation Unit (AU)
When the system opens a new allocation unit to write IPC data, Western Digital requires
that the LBA range for the allocation unit be trimmed. If a substream/auxiliary stream
requires opening a new allocation unit, a TRIM of the range for the auxiliary/substream is
also required.

Executing the TRIM over allocation units before they are used allows the device to
clean up any old data that was left over when the allocation unit is reused. This enables
a significant reduction in garbage collection which frees up more disk bandwidth
for additional features such as more cameras, auxiliary streams, picture streams, and
playback streams. Even when the device has been previously completely trimmed, any
write to an allocation unit must first be preceded by a trim for the AU.

Summary of Trim XL and AU suggestions:

• All stream data writes in a host AU must be preceded by a Trim (XL) command.
• Host OS meta data areas do not need a trim.
• Trim (XL) the entire drive before performing high level system format.
• Trim LBA and range must be 4K aligned.
• Only use one range for the trim of the AU (not multiple ranges that combined equal

the AU).

Trim Command - General Benefits for Hard Disk Drives

WHITE PAPER

 Trim Command - General Benefits for Hard Disk Drives 3

Additional host OS suggestions:

• Use a large Allocation Unit (AU).
Recommend at least 1GiB/AU. 2GiB would be preferable.

• Always allocate a full AU per stream.
Do not partially allocate AUs at the end of the HDD Lba space.

• AUs must represent the same Lba space after every wrap.
• Co-locate all video meta-data in the same video stream AU LBA

space.
• Co-locate all system level meta-data in a confined area in the

lower range of the LBA space.
• Locate video meta-data as a sequential stream (either forward or

reverse). Video meta-data with gaps is not SMR friendly.
• Do not backup and rewrite LBAs in an AU.

Write the video streams purely sequential. It is understood that
the video meta-data streams will typically rewrite data and this
practice is acceptable.

• Use a large and consistent block count size for the video stream
write commands. This allows the HDD to identify this as a video
record write command.

• Use significantly smaller block count size for meta-data write
commands.
This allows the HDD to identify this write data as meta-data.

• Write all streams (video/aux/picture) forward sequentially. Some
systems have reverse sequentially written streams which are not
SMR friendly. The exception for this rule is a reverse video meta-
data stream.

• Take care on placement of buzzers in the SVR box used for alerts.
Improper placement or buzzer frequency could impact drive
performance. In general, eliminate vibration as much as possible.

• Limit use of ATA Flush commands to the bare minimum.
• Incorporate the use of the ATA NOP command to inform the

HDD of a system buffer under-run/over-run condition. This helps
greatly with system validation and debugging.

• Incorporate the use of ATA security (password) for unlocking and
system identification for the HDD.

• All data must be 4K aligned for optimum performance.
• NCQ 6G SATA support.
• Trim LBA and range must be 4K aligned.

Benefits for an SMR Drive
Western Digital SMR drives use Full LBA Indirection. Unlike CMR drives,
SMR drives allow the LBA’s mapping to physical location to change
with each write. This requires HDD resources to keep track of LBAs
that are mapped to a physical location (translation table like what is
used for SSDs).

Trimming releases those resources and frees up the physical media
space to be reused. Trimming also relieves the drive of background
activities associated with the “un-needed’ write data.

Only the host can tell the drive what data is no longer needed. The
drive will never delete user data on its own. A Trim command will tell
the drive what specific data is no longer needed.

Overwriting previously written AUs in an inconsistent manner can
leave behind small amounts of valid data in a previously used SMR
zone. This creates “garbage” that may eventually need to be cleaned
up by the HDD in order to reclaim resources. The drive does this in the
background by moving valid data to a new zone as needed. Once all
of the valid data has been moved out of a zone (either by background
activities or by the host overwriting all of the data or by the host
issuing a Trim), the used SMR zone can be reclaimed and freed for
future AU use.

Trimming a previously written AU (Allocation Unit) prior to reuse by the
host system can prevent negative effects that result from inconsistent
LBA invalidation and free up HDD resources without the need for
background work. All data within the Trim AU range will be grouped
into the proper physical locations for future Trims to be able to clean
the AU completely on the media besides the logical LBA space.

A Trim of the AU must always precede any writing into the AU by the
host even if the drive is already completely trimmed.

RAID Rebuild
A RAID rebuild is the data reconstruction process that occurs when a
hard disk drive needs to be replaced. A Trim command must be issued
to restore original performance.

WHITE PAPER

 Trim Command - General Benefits for Hard Disk Drives 4

Implementation
The Trim functionality should be implemented in Linux Application
Layer. In the Linux application boot-up, it should check if Data Set
Management XL (DSM XL) trim is supported. The support flag for this
drive should be stored in a global variable in the Application Layer.

Data Set Management XL (DSM XL) support bit is specified in ACS-4
documentation. To check if DSM XL is supported, query Log Address
30H (Identify Device Data Log), Page 03H (Supported Capabilities),
Qword (byte offset 8-15), Bit 50.

Before the application sends a DSM XL Trim command to a drive, it
should check the global variable to see if the drive supports trim.

At the end of this document is sample code for trim.
To check if the DSM XL Trim command is supported, please refer to the
function is_dsm_xl_supported().

Important: It is strongly recommended to check the feature
support once when the application starts, rather than checking
the feature support every time a trim is issued. This will reduce
unnecessary overhead.

On a HDD hot-plug condition, the DSM XL support bit must be
rechecked and the global variable re-initialized.

DSM XL is a non-queued command. If the OS is operating in an NCQ
environment, all of the queued commands must complete before this
non-queued command is issued. Otherwise, there will be a queue
command intermix error.

Error Handling
Check for DSM XL support before issuing the command to prevent the
OS from executing exception handling. This can occur due to an error
condition generated for drives that do not support DSM XL Trim.

On a DSM XL Trim command error, the application layer may choose to
dump failure information, such as if DSM XL Trim is supported, Trim Start
LBA and Trim length.

Identify Device

7.1 Log Address 30H (Identify Device Data)

7.2 Log Address 30H (Identify Device Data)

Log Address Log Name Feature Set Support R/W Access

1Ah.. 1Fh Reserved

20h Obsolette

21h Write Stream Error Log Streaming F RO GPL b

22h Read Stream Error Log Streaming F RO GPL b

23h Obsolete

24h Current Device Internal
Status Data log

None O RO GPL b

25h Saved Device Internal
Status Data log

None O RO GPL b

26h.. 2Eh Reserved

2Fh Set Sector Configuration None RO GPL b

30h IDENTIFY DEVICE data None M RO GPL, SL

31h.. 7Fh Reserved

80h.. 9Fh Host Specific SMART M R/W GPL, SL

A0h.. DFh Device Vendor Specific SMART O VS GPL, SL

E0h SCT Command/Status SCT F R/W GPL, SL

E1h SCT Data Transfer SCT F R/W GPL, SL

E2h.. FFh Reserved

Page Description Required

00h List of supported pages (see 9.10.2) M

01h Copy of IDENTIFY DEVICE data (see 7.13.6) M

02h Capacity (see 9.10.4) M

03h Supported Capacbilityes (see 9.10.5) M

04h Current Settings (see 9.10.6) M

05h ATA Strings (see 9.10.7) M

06h Security (see 9.10.8) M

07h Parallel ATA (see 9.10.9) P

08h Serial ATA (see 9.10.9) S

09h Reserved for ZAC See ZAC

0Ah.. FFh Reserved

WHITE PAPER

 Trim Command - General Benefits for Hard Disk Drives 5

7.3 Supported Capabilities Page (DSM XL Support Bit)

Offset Type Content

8.. 15 QWord Supported Capabilities

Bit Description

63 Shall be set to one

62:55 Reserved

54 ADVANCED BACKGROUND OPERATION SUPPORTED bit

53 PERSISTENT SENSE DATA REPORTING bit

52 SFF-8447 REPORTING bit

51 DEFINITIVE ENDING PATTERN SUPPORTED bit

50 DATA SET MANAGEMENT XL SUPPORTED bit

49 SET SECTOR CONFIGURATION SUPPORTED bit

48 ZERO EXT SUPPORTED bit

47 SUCCESSFUL NCQ COMMAND SENSE DATA SUPPORTED bit

46 DLC SUPPORTED bit

45 REQUEST SENSE DEVICE FAULT SUPPRORTED bit

Data Set Management XL
The Data Set Management XL command (ATA Opcode 07h) provides
information (e.g., file system information) that the device may use to
optimize its operations.

Inputs
See the following table for a Data Set Management XL Trim Command:

Field Description

FEATURE Bit Description

15:8 DSM Function Field

7:1 Reserved

0 TRIM bit

COUNT Number of 512-byte blocks to be transferred.
The value zero is reserved.

LBA If the TRIM bit is set to one, reserved.

If the TRIM bit is cleared to zero, defined by the DSM FUNCTION field.

DEVICE Bit Description

7 Obsolete

6 N/A

5 Obsolete

4 Transport Dependent

3:0 Reserved

COMMAND 7:0 07h

Host Inputs to Device Data Structure
Data Set Management XL Request Data is a list of one or more XL
LBA Range Entry pages (see table below).

If the TRIM bit is set to one, individual XL LBA Range Entries may
specify LBA ranges that overlap and are not required to be sorted.

XL LBA Range Entry

Offset Type Description

0.. 15 DQWord Entry 0

Bit Description

127:64 RANGE LENGTH field

63:48 Reserved

74:0 LBA VALUE field

16.. 31 DQWord Entry 1

Bit Description

127:64 RANGE LENGTH field

63:48 Reserved

47:0 LBA VALUE field

... ...

496..511 DQWord Entry 31

Bit Description

127:64 RANGE LENGTH field

63:48 Reserved

47:0 LBA VALUE field

RANGE LENGTH Field
The RANGE LENGTH field specifies the number of logical sectors
in the LBA range. If the RANGE LENGTH field is set to 0h, the entry
shall be ignored.

LBA VALUE Field
The LBA Value field specifies the starting LBA of the LBA range.
If the LBA VALUE plus the range is greater than the accessible
capacity, the device shall return command aborted.

WHITE PAPER

 Trim Command - General Benefits for Hard Disk Drives 6

Sample Source Code
/* Sample code how to check if DSM XL is supported. It issues a DSM XL
to trim the entire HDD if DSM XL is supported.

The function is_dsm_xl_supported() returns 1 (if DSM XL is supported)
and 0 (if DSM XL is not supported). This state is then saved. Next time
a trim issued, the application will check against the saved state versus
issuing the Read Log command again.

The check for DSM XL supported should be part of the Application
Bootup process.

*/

Sample Source Code:

#include <ctype.h>

#include <fcntl.h>

#include <stdint.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/ioctl.h>

#include <scsi/sg.h>

#include <unistd.h>

// See ACS-4 DATA SET MANAGEMENT XL command

typedef struct dsm _ trim _ xl _ range _ entry _ t {

 uint64 _ t lba _ value; // LBA VALUE field - little

endian

 uint64 _ t range _ length; // RANGE LENGTH field -

little endian

} dsm _ trim _ xl _ range _ entry;

#define DSM _ TRIM _ XL _ ENTRY _ SIZE (16)

#define ATA _ SECTOR _ SIZE (512)

#define SGIO _ TIMEOUT (1000 * 60)

#define MAX _ DEVICES (1024)

// global variables to store info per device

struct device _ data _ t {

 char path[FILENAME _ MAX];

 uint64 _ t total _ lbas;

 uint8 _ t supported;

};

static struct device _ data _ t _ devices[MAX _ DEVICES];

static uint32 _ t _ device _ count = 0;

/**

 * Swap bytes from NULL terminated string.

 Useful for ATA IDENTIFY DEVICE strings

 * parameters:

 * str NULL terminated string

 * returns:

 * byte swapped string

 */

char *byteswap(char *str) {

 size _ t i;

 if (!str) {

 return 0;

 }

 for (i = 0; i <= strlen(str) && i + 1 <= strlen(str);

i += 2) {

 char a, b;

 a = str[i];

 b = str[i + 1];

 str[i] = b;

 str[i + 1] = a;

 }

 return str;

}

/**

 * trim leading/trailing spaces from string

 * parameters:

 * str NULL terminated string

 * returns:

 * trimmed string

 */

char *trim(char *str) {

 size _ t len;

 int i;

 if (!str) {

 return 0;

 }

 for (i = 0; i <= (int)strlen(str) && str[i] == ‘ ‘;

++i);

 len = strlen(str + i);

 memmove(str, str + i, len);

 str[len] = 0;

 for (i = (int)strlen(str); i >= 0; i--) {

 char *c = str + i;

 if (isspace(*c) || *c == ‘\0’) {

 *c = 0;

WHITE PAPER

 Trim Command - General Benefits for Hard Disk Drives 7

 } else {

 break;

 }

 }

 return str;

}

/**

 * Write unsigned 64-bit value to array - little endian

 * parameters:

 * value The value to put in buffer

 * buffer The address to store 64-bit value

 */

void le _ u64 _ to _ array(uint64 _ t value, uint8 _ t* buffer)

{

 int i;

 for (i = 0; i < 8; i++) {

 *buffer++ = value & 0xFF;

 value >>= 8;

 }

}

/**

 * Read 16-bit unsigned value from device data (IDENTIFY

DEVICE, READ LOG EXT etc)

 * parameters:

 * word Word offset to read

 * buffer Device data buffer

 * size Size of device data buffer

 * returns:

 * 16-bit unsigned value from the buffer

 */

uint16 _ t array _ to _ le _ u16(uint8 _ t word, const

uint8 _ t * const buffer, size _ t size) {

 if (!buffer || size == 0 || word * 2 + 1 >= size) {

 fprintf(stderr, “invalid parameter(s)\n”);

 return 0;

 }

 return (uint16 _ t)buffer[word * 2]

 | ((uint16 _ t)buffer[word * 2 + 1] << 8);

}

/**

 * Read 32-bit unsigned value from device data (IDENTIFY

DEVICE, READ LOG EXT etc)

 * parameters:

 * word Word offset to read

 * buffer Device data buffer

 * size Size of device data buffer

 * returns:

 * 32-bit unsigned value from the buffer

 */

uint32 _ t array _ to _ le _ u32(uint8 _ t dword, const

uint8 _ t * const buffer, size _ t size) {

 if (!buffer || size == 0 || dword * 4 + 3 >= size) {

 fprintf(stderr, “invalid parameter(s)\n”);

 return 0;

 }

 return (uint32 _ t)buffer[dword * 4]

 | ((uint32 _ t)buffer[dword * 4 + 1] << 8)

 | ((uint32 _ t)buffer[dword * 4 + 2] << 16)

 | ((uint32 _ t)buffer[dword * 4 + 3] << 24);

}

/**

 * Read 64-bit unsigned value from device data (IDENTIFY

DEVICE, READ LOG EXT etc)

 * parameters:

 * word Word offset to read

 * buffer Device data buffer

 * size Size of device data buffer

 * returns:

 * 64-bit unsigned value from the buffer

 */

uint64 _ t array _ to _ le _ u64(uint8 _ t qword, const

uint8 _ t * const buffer, size _ t size) {

 if (!buffer || size == 0 || qword * 8 + 7 >= size) {

 fprintf(stderr, “invalid parameter(s)\n”);

 return 0;

 }

 return (uint64 _ t)buffer[qword * 8]

 | ((uint64 _ t)buffer[qword * 8 + 1] << 8)

 | ((uint64 _ t)buffer[qword * 8 + 2] << 16)

 | ((uint64 _ t)buffer[qword * 8 + 3] << 24)

 | ((uint64 _ t)buffer[qword * 8 + 4] << 32)

 | ((uint64 _ t)buffer[qword * 8 + 5] << 40)

 | ((uint64 _ t)buffer[qword * 8 + 6] << 48)

 | ((uint64 _ t)buffer[qword * 8 + 7] << 56);

}

/**

 * Use SG _ IO to send a SCSI command

 * https://www.tldp.org/HOWTO/SCSI-Generic-HOWTO/sg _ io _

hdr _ t.html

 * parameters:

 * fd Send command to this file descripton

 * direction SG _ IO transfer direction, usually: SG _

DXFER _ NONE, SG _ DXFER _ TO _ DEV or SG _ DXFER _ FROM _ DEV

 * cdb CDB buffer

 * cdb _ sz Size of CDB buffer

 * buffer Returns device data (0 for SG _ DXFER _

NONE)

 * buffer _ sz Size of buffer (0 for SG _ DXFER _ NONE)

 * sense Returns sense data

 * sense _ sz Size of sense buffer

 * returns:

 * error 0 upon success

 */

int scsi _ command(int fd, int direction, uint8 _ t* cdb,

size _ t cdb _ sz,

 uint8 _ t* buffer, size _ t buffer _ sz, uint8 _ t* sense,

size _ t sense _ sz) {

 int ret;

 int i;

WHITE PAPER

 Trim Command - General Benefits for Hard Disk Drives 8

 sg _ io _ hdr _ t sgio;

 // clear sense data

 memset(sense, 0, sense _ sz);

 // Setup SG _ IO pass-through

 memset(&sgio, 0, sizeof(sgio));

 sgio.interface _ id = ‘S’;

 sgio.dxfer _ direction = direction;

 sgio.dxfer _ len = buffer _ sz;

 sgio.dxferp = buffer;

 sgio.cmd _ len = cdb _ sz;

 sgio.cmdp = cdb;

 sgio.mx _ sb _ len = sense _ sz;

 sgio.sbp = sense;

 sgio.timeout = SGIO _ TIMEOUT;

 ret = ioctl(fd, SG _ IO, &sgio);

 if (ret) {

 fprintf(stderr, “ioctl failed (ret = %d)\n”, ret);

 }

 else if (sgio.status & 0x01 || sgio.driver _ status) {

 fprintf(stderr, “device error (status = 0x%x;

driver _ status = 0x%x)\nsense:”,

 sgio.status, sgio.driver _ status);

 for (i = 0; i < sgio.sb _ len _ wr; i++) {

 fprintf(stderr, “ %02x”, sense[i]);

 }

 fprintf(stderr, “\n”);

 ret = 1;

 }

 return ret;

}

/**

 * Use SG _ IO to send READ LOG EXT command to ATA

device.

 * parameters:

 * fd Send command to this file descripton

 * log _ address ATA spec: log address

 * page _ number ATA spec: page number

 * buffer Returns id _ buffer device data

 * buffer _ sz Size of buffer (should be a multiple

of 512)

 * returns:

 * error 0 upon success

 */

int ata _ read _ log _ ext(int fd, uint8 _ t log _ address,

uint16 _ t page _ number,

 uint8 _ t* buffer, size _ t buffer _ sz) {

 uint8 _ t cdb[16];

 uint8 _ t sense[32];

 uint16 _ t features = 0;

 uint16 _ t log _ page _ count = buffer _ sz / 512;

 uint64 _ t lba = (((uint64 _ t)page _ number & 0xFF00)

<< 24)

 | ((page _ number & 0x00FF) << 8)

 | (log _ address);

 if (fd < 0 || !buffer || buffer _ sz < ATA _ SECTOR _

SIZE) {

 fprintf(stderr, “invalid parameter(s)\n”);

 return -1;

 }

 // Set CDB - SAT spec, section 12.2.2.3

 cdb[0] = 0x85; // ATA pass-through (16)

 cdb[1] = 0x09; // PROTOCOL (bit 4:1 = PIO Data-In

[4]); EXT command (bit 0 = 1)

 cdb[2] = 0x0E; // OFFLINE (bit 7:6 = 0); CK _ COND

(bit 5 = 0); T _ TYPE (bit 4 = 0); T _ DIR (bit 3 = 1);

BYTE _ BLOCK (bit 2 = 1); T _ LENGTH (bit 1:0 = 2)

 cdb[3] = (features >> 8) & 0xFF; // FEATURES

(15:8)

 cdb[4] = features & 0xFF; // FEATURES

(7:0

 cdb[5] = (log _ page _ count >> 8) & 0xFF; // COUNT

(15:8)

 cdb[6] = log _ page _ count & 0xFF; // COUNT

(7:0)

 cdb[7] = (lba >> 24) & 0xFF; // LBA (31:24)

 cdb[8] = lba & 0xFF; // LBA (7:0)

 cdb[9] = (lba >> 32) & 0xFF; // LBA (39:32)

 cdb[10] = (lba >> 8) & 0xFF; // LBA (15:8)

 cdb[11] = (lba >> 40) & 0xFF; // LBA (47:40)

 cdb[12] = (lba >> 16) & 0xFF; // LBA (23:16)

 cdb[13] = 0x00; // DEVICE

 cdb[14] = 0x2f; // COMMAND =

READ LOG EXT

 cdb[15] = 0x00;

 return scsi _ command(fd, SG _ DXFER _ FROM _ DEV, cdb,

sizeof(cdb), buffer, buffer _ sz, sense, sizeof(sense));

}

/**

 * Use SG _ IO to send IDENTIFY DEVICE command to ATA

device.

 * parameters:

 * fd Send command to this file descripton

 * buffer Returns id _ buffer device data

 * buffer _ sz Size of buffer (must be at least 512

bytes)

 *

 * returns:

 * error 0 upon success

 */

int ata _ identify _ device(int fd, uint8 _ t* buffer,

size _ t buffer _ sz) {

 uint8 _ t cdb[12];

 uint8 _ t sense[32];

WHITE PAPER

 Trim Command - General Benefits for Hard Disk Drives 9

 if (fd < 0 || !buffer || buffer _ sz < ATA _ SECTOR _

SIZE) {

 fprintf(stderr, “invalid parameter(s)\n”);

 return -1;

 }

 // Set CDB - SAT spec, section 12.2.2.2

 cdb[0] = 0xA1; // ATA pass-through (12)

 cdb[1] = 0x08; // PROTOCOL (bits 4:1 = PIO Data-In[4])

 cdb[2] = 0x0E; // T _ DIR (bit 3 = 1); BYTE _ BLOCK

(bit 2 = 1); T _ LENGTH (bits 1:0 = 2)

 cdb[3] = 0x00; // FEATURES (7:0)

 cdb[4] = 0x01; // COUNT (7:0)

 cdb[5] = 0x00; // LBA (7:0)

 cdb[6] = 0x00; // LBA (15:8)

 cdb[7] = 0x00; // LBA (23:16)

 cdb[8] = 0x00; // DEVICE

 cdb[9] = 0xEC; // COMMAND = IDENTIFY DEVICE

 cdb[10] = 0x00; // reserved

 cdb[11] = 0x00; // CONTROL

 return scsi _ command(fd, SG _ DXFER _ FROM _ DEV, cdb,

sizeof(cdb), buffer, buffer _ sz, sense, sizeof(sense));

}

/**

 * Use SG _ IO to send ATA data set management trim XL

command to ATA device.

 * parameters:

 * fd Send command to this file descripton

 * entry Pointer to a dsm _ trim _ xl _ range _ entry

array

 * entry _ size The number of valid entries

 *

 * returns:

 * error 0 upon success

 */

int ata _ trim _ xl(int fd, dsm _ trim _ xl _ range _ entry *

entry, int entry _ size) {

 int ret;

 int i;

 uint8 _ t cdb[16];

 uint8 _ t sense[32];

 uint8 _ t* buffer;

 size _ t buffer _ sz;

 uint64 _ t lba = 0;

 uint16 _ t count;

 if (fd < 0 || !entry || !entry _ size) {

 fprintf(stderr, “invalid parameter(s)\n”);

 return -1;

 }

 // Prepare buffer for DSM TRIM XL

 count = ((entry _ size * DSM _ TRIM _ XL _ ENTRY _ SIZE)

+ ATA _ SECTOR _ SIZE - 1) / ATA _ SECTOR _ SIZE;

 buffer _ sz = count * ATA _ SECTOR _ SIZE;

 buffer = malloc(buffer _ sz);

 if (!buffer) {

 fprintf(stderr, “out of memory\n”);

 return -1;

 }

 memset(buffer, 0, buffer _ sz);

 for (i = 0; i < entry _ size; i++) {

 le _ u64 _ to _ array(entry[i].lba _ value, buffer + i

* DSM _ TRIM _ XL _ ENTRY _ SIZE);

 le _ u64 _ to _ array(entry[i].range _ length, buffer

+ sizeof(uint64 _ t) + i * DSM _ TRIM _ XL _ ENTRY _ SIZE);

 }

 // Set CDB - SAT spec, section 12.2.2.3

 cdb[0] = 0x85; // ATA pass-through (16)

 cdb[1] = 0x0D; // PROTOCOL (bit 4:1 = DMA[6]); EXT

command (bit 0 = 1)

 cdb[2] = 0x02; // OFFLINE (bit 7:6 = 0); CK _ COND

(bit 5 = 0); T _ TYPE (bit 4 = 0); T _ DIR (bit 3 = 0);

BYTE _ BLOCK (bit 2 = 0); T _ LENGTH (bit 1:0 = 2)

 cdb[3] = 0x00; // FEATURES (bit 15:8 = 0)

 cdb[4] = 0x01; // FEATURES (bit 0 = TRIM[1])

 cdb[5] = (count >> 8) & 0xFF; // COUNT (15:8)

 cdb[6] = count & 0xFF; // COUNT (7:0)

 cdb[7] = (lba >> 24) & 0xFF; // LBA (31:24)

 cdb[8] = lba & 0xFF; // LBA (7:0)

 cdb[9] = (lba >> 32) & 0xFF; // LBA (39:32)

 cdb[10] = (lba >> 8) & 0xFF; // LBA (15:8)

 cdb[11] = (lba >> 40) & 0xFF; // LBA (47:40)

 cdb[12] = (lba >> 16) & 0xFF; // LBA (23:16)

 cdb[13] = 0x00; // DEVICE

 cdb[14] = 0x07; // COMMAND = DATA SET MANAGEMENT XL

 cdb[15] = 0x00;

 ret = scsi _ command(fd, SG _ DXFER _ TO _ DEV, cdb,

sizeof(cdb), buffer, buffer _ sz, sense, sizeof(sense));

 free(buffer);

 return ret;

}

/**

 * Query device to determine if DATA SET MANAGEMENT XL

command is supported

 * parameters. It shall read log address 0x30, log page

3, and parse QWord 1,

 * bit 50.

 * fd Send command to this file descripton

 * returns:

 * supported 1 if supported, 0 if not supported

 */

uint8 _ t is _ dsm _ xl _ supported(int fd) {

 uint8 _ t supported = 0;

 uint8 _ t buffer[ATA _ SECTOR _ SIZE] = { 0 };

WHITE PAPER

 Trim Command - General Benefits for Hard Disk Drives 10

 uint64 _ t supported _ capabilities;

 if (!ata _ read _ log _ ext(fd, 0x30, 3, buffer, ATA _

SECTOR _ SIZE)) {

 supported _ capabilities = array _ to _ le _ u64(1,

buffer, ATA _ SECTOR _ SIZE);

 supported = (supported _ capabilities >> 50) & 1;

 }

 return supported;

}

/**

 * Trim entire LBA range of device path

 * parameters

 * data device _ data _ t structure

 * return

 * error 0 upon success

 * 1 if DSM XL trim command fails

 * 2 if path could not be opened

 * -1 if DSM XL is not supported

 */

int trim _ entire _ drive(struct device _ data _ t *data) {

 dsm _ trim _ xl _ range _ entry entry[1];

 int ret = 0;

 int fd;

 int i;

 if (data->supported) {

 fd = open(data->path, O _ RDONLY);

 if (fd < 0) {

 fprintf(stderr, “failed to open %s\n”, data-

>path);

 return 2;

 }

 entry[0].lba _ value = 0;

 entry[0].range _ length = data->total _ lbas;

 printf(“Trim XL on %s\n”, data->path);

 printf(“START LBA RANGE LENGTH\n”);

 printf(“-------------- --------------\n”);

 for (i = 0; i < sizeof(entry) / sizeof(entry[0]);

i++) {

 printf(“0x%012lx 0x%012lx\n”, entry[i].lba _

value, entry[i].range _ length);

 }

 if (!ata _ trim _ xl(fd, entry, sizeof(entry) /

sizeof(entry[0]))) {

 printf(“DSM Trim XL ok.\n”);

 } else {

 ret = 1;

 }

 close(fd);

 } else {

 printf(“DSM Trim XL is not supported.\n”);

 ret = -1;

 }

 return ret;

}

/**

 * Open path and fetch total LBAs and DSM XL supported

 * parameters

 * path The device path name (eg /dev/sda)

 * returns

 * error 0 upon success

 * 1 failed to open path

 * 2 failed to get LBAs/DSM XL support

 * 3 Too many devices queried

 */

int query _ device(const char* const path) {

 int ret;

 int fd;

 int found;

 uint32 _ t i;

 uint8 _ t id _ buffer[ATA _ SECTOR _ SIZE] = { 0 };

 uint64 _ t lbas;

 char model[41] = { 0 };

 char serial[21] = { 0 };

 uint8 _ t supported;

 fd = open(path, O _ RDONLY);

 if (fd < 0) {

 fprintf(stderr, “failed to open %s\n”, path);

 return 1;

 }

 ret = ata _ identify _ device(fd, id _ buffer,

sizeof(id _ buffer));

 if (ret) {

 fprintf(stderr, “Error: identify device failed

(%s)\n”, path);

 close(fd);

 return 2;

 }

 // serial number at word 10, 20 bytes

 memcpy(serial, id _ buffer + 10 * 2, 20);

 serial[20] = 0;

 byteswap(serial);

 trim(serial);

 // model number at word 27, 40 bytes

 memcpy(model, id _ buffer + 27 * 2, 40);

 model[40] = 0;

 byteswap(model);

 trim(model);

 // total LBAs at word 100, 8 bytes

 lbas = array _ to _ le _ u64(0, id _ buffer + 100 * 2, 8);

 printf(“Path: %s\n”, path);

WHITE PAPER

 Trim Command - General Benefits for Hard Disk Drives 2579-810265-A01 June 2020

 printf(“Model: %s\n”, model);

 printf(“Serial: %s\n”, serial);

 printf(“LBAs: %lu\n”, lbas);

 supported = is _ dsm _ xl _ supported(fd);

 close(fd);

 found = 0;

 for (i = 0; i < _ device _ count; i++) {

 if (strcmp(_ devices[i].path, path) == 0) {

 found = 1;

 _ devices[i].supported = supported;

 _ devices[i].total _ lbas = lbas;

 break;

 }

 }

 if (!found) {

 // add it, if and only if there’s enough space

 if (_ device _ count < MAX _ DEVICES) {

 memset(_ devices[_ device _ count].path, 0,

FILENAME _ MAX);

 strncpy(_ devices[_ device _ count].path,

path, FILENAME _ MAX - 1);

 _ devices[_ device _ count].supported =

supported;

 _ devices[_ device _ count].total _ lbas =

lbas;

 ++ _ device _ count;

 } else {

 fprintf(stderr, “too many devices (max is

%u)\n”, MAX _ DEVICES);

 return 3;

 }

 }

 return 0;

}

/**

 * Trim all lbas on one device (passed in via command

line argument).

 */

int main(int argc, char* argv[]) {

 int ret;

 if (argc < 2) {

 fprintf(stderr, “missing device path\n”);

 return 128;

 }

5601 Great Oaks Parkway
San Jose, CA 95119, USA
US (Toll-Free): 800.801.4618
International: 408.717.6000

www.westerndigital.com

© 2020 Western Digital Corporation or its affiliates. All rights reserved. Western Digital, the Western Digital logo, and ActiveScale are registered trademarks or trademarks
of Western Digital Corporation or its affiliates in the US and/or other countries. All other marks are the property of their respective owners.

 ret = query _ device(argv[1]);

 if (!ret) {

 ret = trim _ entire _ drive(& _ devices[0]);

 }

 if (ret) {

 return 1;

 }

 return 0;

}

