Equation Sheet for A-Level Chemistry These are the equations you need to

memorise for your Chemistry A-Level

Amount of Substance

Moles n = <u>m</u> M r

Concentration c = <u>n</u> V

Molar gas volume V = n x 24

Number of particles = n x N_A

Ideal gas Equation pV = nRT

Atom economy

= <u>Mrof desired product</u> X 100 Sum of M_rof all reactants

% Yield

= <u>Actual yield</u> x 100 Theoretical yield Energetics

Enthalpy change Q = mc∆T

Average bond enthalpy $\Delta H = \Sigma$ (bond enthalpies in reactants) $-\Sigma$ (bond enthalpies in products)

Electrode Potentials

EMF E^θ =E^θright hand side - E^θleft hand side

Thermodynamics

Gibbs Free Energy Equation $\Delta G = \Delta H - T\Delta S$

Transition Metals

Coloured complex ions - difference in energy $pK_a = \Delta E = hv = \frac{hc}{\lambda}$ $K_a = [\frac{h}{\lambda}]$

Chemical Equilibria

Equilibrium constant wrt concentration K = [D]^d [E]^e [A]^a[B]^b

Equilibrium constant wrt pressure $K = (\underline{D})^{d} (\underline{E})^{e}$ $(A)^{a} (B)^{b}$

Rate = k[A]^m[B]ⁿ

Arrhenius is provided but you should be able to use:

k = Ae^{-Ea/RT} In k = $-E_a/RT$ + In A Acids and Bases pH = $-\log_{10}[H_{+}]$ Kw= [H⁺][OH⁻]

pK_a = -log₁₀K_a

K_a = <u>[H⁺][A ⁻]</u> [HA]

These are the meaning of the symbols on the equation sheet

Amount of Substance

n = number of moles m = mass M_r = formula mass C = concentration V = volume N_A = Avogadro's constant p = pressure R = gas constant T = temperature

Rate Equations

k = rate constant
[A] = concentration of A
[B] = concentration of B
a = order wrt A
b = order wrt B
A = Arrhenius pre exponential factor
e = exponential
E_a = activation energy
T = temperature
R = gas constant
In = natural log

Energetics

q = heat energy m = mass c = specific heat capacity ΔT = change in temperaure ΔH = enthalpy change)

Electrode Potentials

 E^{θ} = electrode potential

Thermodynamics

 ΔG = Gibbs free energy ΔH = enthalpy change T = temperature ΔS = change in entropy

Transition Metals

 ΔE = change in energy h = Planck's constant \vee = frequency c = velocity of light λ = wavelength

Chemical Equilibria

- K_c = Equilibrium constant (wrt concentration)
- K_p = Equilibrium constant (wrt pressure)
- [A] / (A) = concentration/ partial pressure of reactant A
- [B] / (B) = concentration/ partial pressure of reactant B
- [D] / (D) = concentration/ partial pressure of product D
- [E] / (E) = concentration/ partial pressure of product E
- a = moles of A from balanced equation
- b = moles of B from balanced equation
- d = moles of D from balanced equation
- e = moles of E from balanced equation

Acids and Bases

[H⁺] = concentration of H [OH⁻] = concentration of OH [A⁻] = concentration of salt [HA] = concentration of acid K_w = lonic product of water K_a = acid disociation constant