

IOR/EOR Practices for Enhanced Efficiency in the Evolving Carbon-Conscious Environment

11–12 JUNE 2024 | JAKARTA, INDONESIA





### Unlocking Optimal Recovery in The Complexities of Challenging Geological Reservoirs :

### **Achieving Success Through Polymer Pilot Injection**

Kwanpat Udomkamponpong

PTTEP











### Introduction

- Field background
- Geological complexity

### **Project Preparation**

- Data Acquisition Program
- Integrated Information

## **Polymer injection Evaluation**

- At injectors •
- At producers •



- Gain Estimation
- **Economic analysis**



### Conclusion



# **Background and Geological Complexity**



Y block

X block

Ń

Z block

Legen

Producer
 Injector
 Normal Fault

1.1.1



### **Thap Raet (TRT) area** located in **S1 concession** (Onshore Thailand)



| 989        | 2001           | 2017                    | 2022              |
|------------|----------------|-------------------------|-------------------|
| Start      | Waterflood     | Pilot polymer injection | Polymer injection |
| production | Implementation |                         | Implementation    |

### **Geological Characteristic**

- Multilayer sandstone reservoir
- Challenged structures & wells trajectory
- Meandering fluvial sediments
- Random channels distribution & thin reservoirs
- Multiple fluid regimes



#### **Reservoir properties**

| Reservoir thickness (m)    | 2 - 30      |
|----------------------------|-------------|
| Reservoir temperature (°C) | 85          |
| Average porosity           | 0.15 - 0.20 |
| Average permeability (mD)  | 50 - 100    |
| Oil density (°API)         | 39          |
| Oil viscosity (cP)         | 1.4         |



# **Project preparation**







# **Project preparation**







# **Large-scale Polymer Injection**













| Location             | Success Criteria                                                                                                                                         |              |                    |                         | Rationale                                                                                |   |                                          |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|-------------------------|------------------------------------------------------------------------------------------|---|------------------------------------------|
| At Injector          | <ul> <li>Flow conformance improvement</li> <li>✓ Observed injected water diversion from high permeability streaks to lower permeability units</li> </ul> |              |                    | rom high<br>eability ur | Measurement of polymer effectiveness in diverting the water to lower permeability sands. |   |                                          |
| Injection Logging To | ool (ILT) Resu                                                                                                                                           | lts          | 21-Aug-22<br>Water | 09-Jan-23<br>Polymer    | 31-May-23<br>Polymer                                                                     |   |                                          |
|                      |                                                                                                                                                          | ZONE NO      | %                  | %                       | %                                                                                        |   |                                          |
|                      |                                                                                                                                                          | <br>         | 0.0                | 0.0                     | 0.0                                                                                      |   |                                          |
|                      |                                                                                                                                                          | I            | 0.0                | 0.0                     | 0.0                                                                                      |   | Z. · · · · · · · · · · · · · · · · · · · |
|                      |                                                                                                                                                          | I            | 0.0                | 0.0                     | 11.6                                                                                     |   |                                          |
|                      |                                                                                                                                                          | I            | 52.9               | 35.2                    | <b>27</b> .6                                                                             |   |                                          |
|                      |                                                                                                                                                          | - 1          | 15.0               | 11.3                    | 10.2                                                                                     |   |                                          |
|                      |                                                                                                                                                          | I            | 4.5                | 8.5                     | 7.4                                                                                      | - | 3                                        |
|                      |                                                                                                                                                          |              | 9.5                | 18.2                    | 17.3                                                                                     |   |                                          |
|                      | Water<br>Injection                                                                                                                                       |              | 8.3                | 12.4                    | 12.4                                                                                     |   | Polymer<br>Injection                     |
|                      |                                                                                                                                                          | Total        | 9.8                | 14.4                    | 13.5                                                                                     |   |                                          |
| - Water              |                                                                                                                                                          | <u>10tai</u> | 100.0              | 100.0                   |                                                                                          |   | Polymer                                  |
| Butter Butter        |                                                                                                                                                          | verti        | Impro<br>cal sweej | ove<br>o efficier       | ncy                                                                                      |   |                                          |







| Location    | tion Success Criteria Rationale                                   |                                                                                                                                                 |
|-------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| At Producer | <ul><li>✓ Increased oil cut</li><li>✓ Reduced water-cut</li></ul> | Measure of the outcome of the pilot, that is to increase the oil production through improved flow conformance of water injection using polymer. |

#### X block: Pattern 2

• 30% WCUT reduction after 5 months





#### Z block: Pattern 5

- WCUT reduction observed in only 1 producer
- No significant oil gain from other producers



Lower waterflood maturity  $\rightarrow$  Better response from polymer injection

| Block | <b>Cumulative VRR</b> | WCUT |
|-------|-----------------------|------|
| Х     | 0.59                  | 75%  |
| Y     | 2.29                  | 98%  |
| Z     | 1.37                  | 95%  |



# **Operational Challenges**



### Producer issues

• Tubing leak in many producers leading to workover operation

### **VRR** control

- Unexpected closed-in producers cause gross production change
- Operational constrain cause VRR control difficulty

#### **Injectivity concern**

- Injectivity deteriorates with time
- Unable to inject in an injector since the beginning

# **Gain Estimation & Economic Evaluation**









Up to

Society of Petroleum Engineers

Estimate oil gain by **analytical tool** - Log wCUT vs Np Plot - DCA

**Recovery gain** over waterflooding

Vary by block from 0.6 - 3.0%



### **Positive NPV result**

Breakdown cost









#### Approach to other **Operational challenges** areas with similar Lesson Learnt • reservoir Further Project Improvement • characteristics as a full-field development **Preparation Phase** [(€)] **Reservoir Simulation** ۲ (°\$°) Laboratory Polymer Screening ٠ Data acquisition Program ٠ **Evaluate Results** EOR Gain Estimation ٠ **Economic Analysis** ۲ **Pilot project & Monitoring Performance**

- Surveillance System
- Displayed Dashboard