

IOR/EOR Practices for Enhanced Efficiency in the Evolving Carbon-Conscious Environment

11–12 JUNE 2024 | JAKARTA, INDONESIA

IOR/EOR Practices for Enhanced Efficiency in the Evolving Carbon-Conscious Environment

Natural Fluid Tracer Application for IOR/EOR iWAG Surveillance and Monitoring

Dinesh Balakrishnan PETRONAS Carigali Sdn Bhd

Presentation Outline

- Field Background
- Natural Fluid Tracer
- Screening Study
- Candidate Selection and Results
- Benefits and Improvement

Introduction

- Field Echo field is located 40km offshore Sarawak, with first production in 1972.
- Comprises of non associated gas and oil reservoirs.
- Major reservoir A,B and C embarked on secondary recovery after 20 years production and since then has achieved >30% recovery.
- Field redevelopment started in 2019 on IOR/EOR recovery with crestal gas and flank water injection at reservoir A and B and iWAG injection at reservoir C to further improve recovery.
- It is crucial to monitor injection flood front and oil rim movement to ensure IOR/EOR success.
- Shallower and deep NAG reservoir are produced as additional gas injection supply for IOR/EOR phases.

WI: 74

1472000

Injection gas

Gas 7.5 MMscfd

Fluid Natural Tracer

- Identification markers of any compound, elements, or properties of a fluid that distinguishes it from another fluid without addition of artificial substance.
- Isotopes of fluid element (Carbon, Hydrogen, etc) used as tracers as stable isotopes has no tendency to undergo decay, degradation.
- Fluid samples undergoes Compound Specific Isotope Analysis (CSIA) via Gas Chromatography Combustion Isotope Ratio Mass Spectrometry (GC-C-IRMS) to detect variation of isotope signature that show contrast between fluids.
- Water samples also undergo full water 12+ ion compositions via Inductively Coupled Plasma Mass spectrometer (ICP-MS) to show contrast in composition.

Methodology / Screening Study

- Tracer screening is conducted to identify if produced fluid has distinguished isotope signature from injected fluid.
- 2 stage screening was conducted using different wells from each reservoirs and injection fluid to increase data confidence.
- Better identification of candidate wells to monitor IOR/EOR performance through natural tracer application.

Reservoir A – Tracer screening and results

Objective

- To monitor new gas injection effectiveness towards eastern area to combat strong eastern aquifer
- To monitor water breakthrough at western flank

Observation (Gas)

- 44S1 & 57S1 displays original produced gas
- 30S1 & 78 showed 15-20% mixing of NAG injected gas

Result

- Some injected gas from 79S distributed towards north west area.
- Requires increase production withdrawal to redirect gas to eastern area

Observation (Water)

- Produced water sample has distinct signature from injected water
- All water sample 37S, 57, 75, 78 showed formation water

Result

- High watercut observed are due to OWC movement up.
- WI 74 water injection has yet to breakthrough producer 75.

Reservoir C – Tracer screening and results

Objective

- To identify iWAG flood front movement (gas and water)
- To confirm historical waterflood performance

Observation (Gas)

- *Limited sample obtained from Res C
- Sample 66 showed close isotope properties with NAG injected gas

Result

- Due to limited baseline, sample 66 result is not conclusive
- More samples required for baseline

Observation (Water)

- Data are combined routine samples monitoring
- Historical water sample 64L showed mixture with injected water

Result

- Well 64L shown to have injector water breakthrough, and well is close in due to high watercut
- Other wells showed formation water even after 20 years water injection

Benefits and Improvement

Benefits

Does not require artificial chemical injection

No expiry

Sample can be collected and analysed even anytime when injection starts

Cost & Operational Viable

Compared to chemical/artificial tracer method

Practical for WI Surveillance

Continued at 6-monthly monitoring

Future Improvement

Long T

Long TAT for Isotope Analysis

No O&G laboratory capability and expertise in Asia

Limited applicability

Required comprehensive screening test to confirm viability

Limited streamline study

Unable to differentiate injectors preferential flow path

IOR/EOR Practices for Enhanced Efficiency in the Evolving Carbon-Conscious Environment

Thank You / Questions

Natural Fluid Tracer Application for IOR/EOR iWAG Surveillance and Monitoring

Team Member : Dinesh Balakrishnan, Tan Kok Liang & Syakirin M Nazri PETRONAS Carigali Sdn Bhd

