

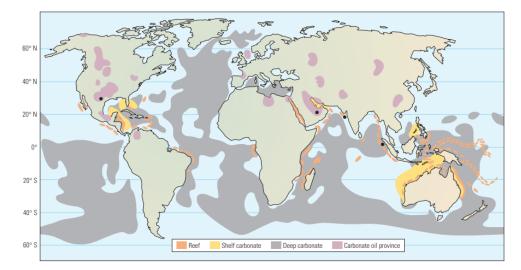
IOR/EOR Practices for Enhanced Efficiency in the Evolving Carbon-Conscious Environment

11–12 JUNE 2024 | JAKARTA, INDONESIA

Challenges for Chemical EOR in Carbonate Reservoirs

Eric Delamaide

IFP Technologies (Canada) Inc. and The EOR Alliance

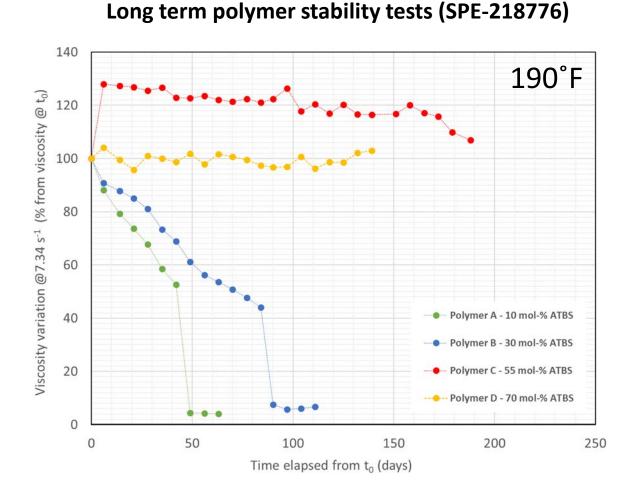


Chemical EOR in carbonate reservoirs

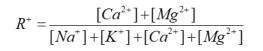
- Carbonate reservoirs can be found in most regions including Asia
 - >50% of world oil resources
- EOR: mostly gas (SPE-100063) so far
- Chemical EOR is challenging
 - (Reservoir heterogeneity)
 - High temperature, high TDS
 - not due to carbonate but often found together
 - High chemicals retention
 - Low permeability/injectivity
 - polymer mechanical degradation

(Oilfield Review Dec. 2000)

Current status of cEOR in carbonates

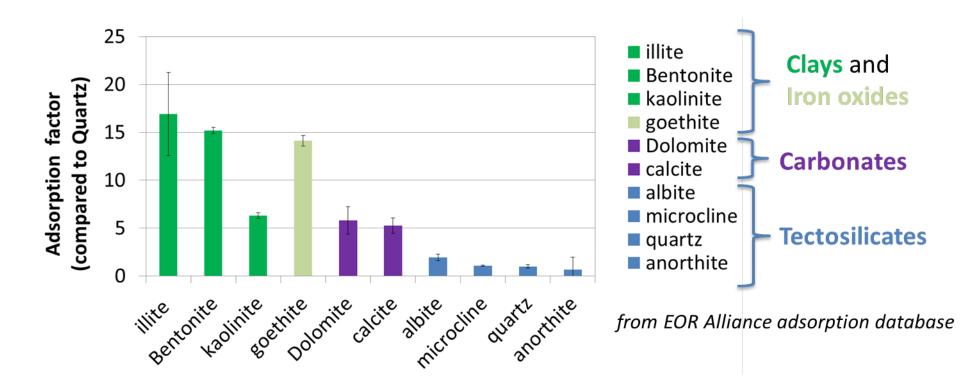

- Numerous old pilots mostly in US (SPE-100063)
 - Mostly polymer, poorly documented
- Few large-scale expansions
- Some recent pilots

Field	Location	Date	Lithology	Temp. (F)	TDS (g/L)	Perm. (md)	Process
Kaji Semoga	Indonesia		Limestone	122	15?	85	SP
UNKNOWN	UAE	2019- 21	Limestone	250	200	10-1,000	P (IT)
Sabriyah Mauddud	Kuwait	2022	Carbonate	172	235 (soft. wat.)	7-700	ASP
Al Shaheen	Qatar	2019	Limestone	135	90-130	10-20	WA



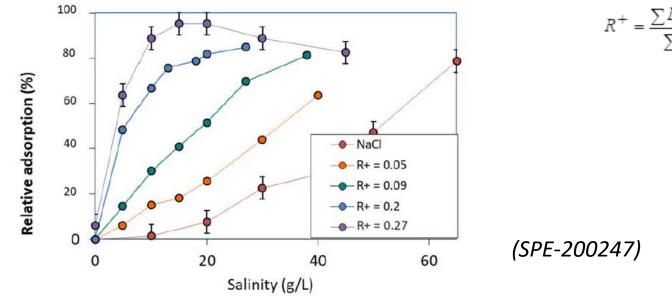
ATBS containing polymers for harsh conditions: ME case

Na⁺ (mg/L)	75,357		
K ⁺ (mg/L)	3,316		
Ca ²⁺ (mg/L)	14,659		
Mg ²⁺ (mg/L)	4,777		
Sr ²⁺ (mg/L)	294		
Ba ²⁺ (mg/L)	4		
Cl ⁻ (mg/L)	159,299		
HCO ₃ ⁻ (mg/L)	47		
TDS (mg/L)	257,753		
Hardness index R ⁺	0.20		



Impact of mineralogy on surfactant static adsorption

Static adsorption on controlled amount of pure minerals for classical anionic surfactant formulation (reference = quartz)



Impact of brine salinity and hardness on surfactant adsorption

Same formulation, various salinities and hardness

 $R^{+} = \frac{\sum DivalentCations}{\sum TotalCations} = \frac{\sum (Ca^{2+} + Mg^{2+})}{\sum (Na^{+} + K^{+} + Ca^{2+} + Mg^{2+})}$

Adsorption of surfactant increases with brine salinity
Behavior towards salinity also depends on brine hardness

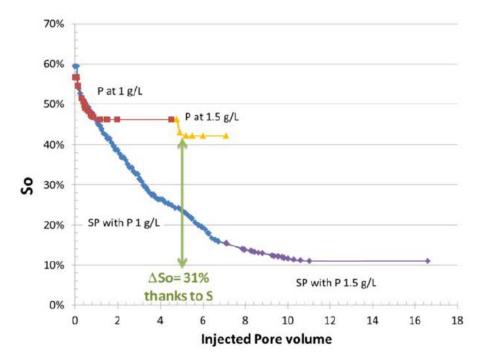
Potential mitigation solutions

- Depending on field context several solutions could be contemplated
 - Brine treatment
 - Softening to remove divalent ions
 - Salinity reduction
 - Chemicals selection
 - Adapt chemical formulation
 - Do not use alkali
 - Injection process
 - Add alkali
 - Salinity gradient
 - Adsorption inhibitors

Economics can be challenging

Not always technically possible,

- economics can be challenging due
- to high required surfactant concentration
- "Traditional solutions"; salinity gradient may require water treatment
- "In-house additional approach"



SP corefloods for ME carbonate case

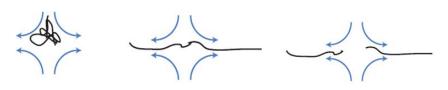
- T = 80°C
- Water
 - Formation 230 g/L
 - W injection seawater
 - 2 passes nano filtration
 - OR adsorption inhibitors

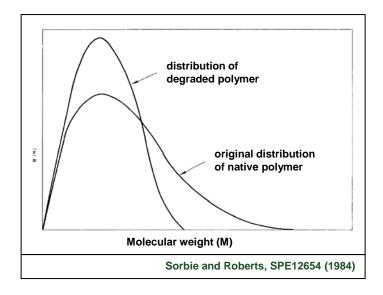
RT (CF)	RT1 (CF04)	RT1 (CF03)	RT2 (CF05)	RT3 (CF06)
Kw (mD)	266	232	39	850
SP slugs MS – PF1 (PV)	1-3	0.6-1.5	0.6-1.5	0.6-1.5
Sor _w (%)	0.58	0.56	0.52	0.6
Final Sor (.frac)	0.21	0.21	0.21	0.22
Adsorption(mg/g)	0.1	0.06	0.29	0.09

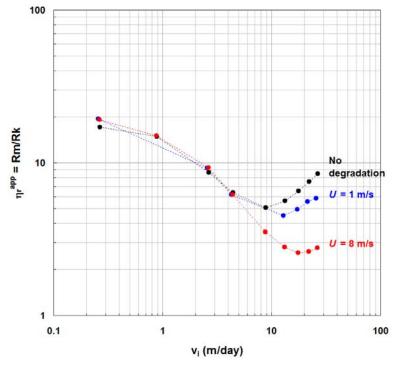
(SPE-197261)

Low permeability/injectivity

Successful polymer pilots in low permeability carbonate reservoirs (SPE 169673)

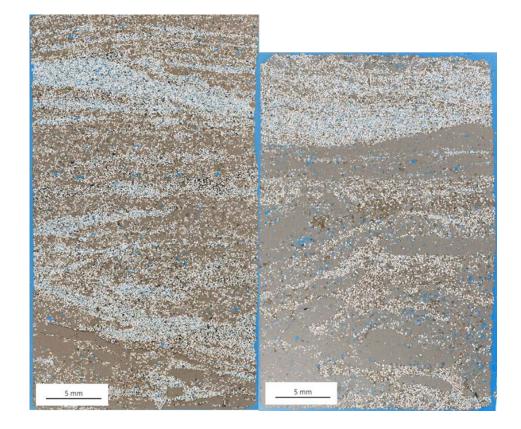

Field	Location	Date	Lithology	Temp. (F)	Porosity (%)	Perm. (md)	Process
Elliasville Caddo Unit	USA (TX)	1980	Limestone reef	34	13.2	0.1-234, avg 11	Ρ
Vacuum (Hale/Mable Leases)	USA (NM)	1983	Dolomite	100	11.5	17.3	Ρ
Slaughter	USA (TX)	1981	Dolomite + anhydrite	109	8-18	1-25, avg 6	SP
UNKNOWN	USA (TX)		Dolomite		11.8	3.9	SP





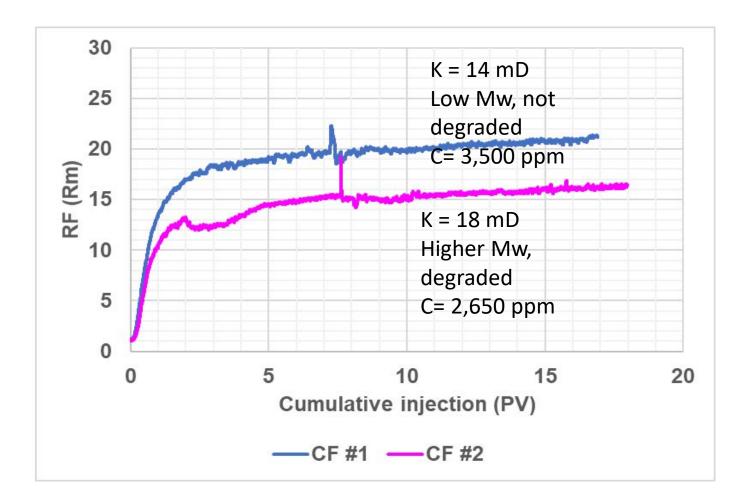
Mechanical degradation of polymer

Occurs when polymer are exposed to elevated extensional strain *irreversible scission of macromolecules, viscosity loss*



Canadian low permeability case

Reservoir temperature	55°C				
Oil viscosity (@res. temperature)	11 mPa.s				
Waterflood water viscosity (@res. temperature)	0.53 mPa.s				
Lithology	from dolomitic quartz sandstone to sandy dolomite				
Average permeability (in the target zone for polymer flooding)	30 mD (60-70% between 10 and 30 mD)				
Average porosity	18%				
Reservoir currently under waterflood (mix between produced water and river water) ; injectors are fractured					



Quartz grains, clay + dolomite cement

Corefloods

Conclusions

- cEOR injection in carbonates is feasible but economics challenging
- Main questions:
 - Chemicals loss
 - Permeability
- Chemical losses: challenging but potential solutions exist
- Permeability
 - 5-20 md?
 - OK in the lab but what about injectivity?
 - Pre-degradation of polymer can alleviate injectivity issues
 - More field testing required