

IOR/EOR Practices for Enhanced Efficiency in the Evolving Carbon-Conscious Environment

11–12 JUNE 2024 | JAKARTA, INDONESIA

Selecting Injected Viscosity In Polymer Flood Projects: Still A Controversial Question

Eric Delamaide

IFP Technologies (Canada) Inc. and The EOR Alliance

Polymer flood field experience

Mobility ratio M

Mobility of displacing fluid/Mobility of displaced fluid

$$(kr_{wm}/\mu_p) / (kr_{om}/\mu_o) = (kr_{wm}/kr_{om}) \times (\mu_o/\mu_p)$$

Could contribute but not the answer

Tambaredjo (SPE-181499)

Selecting polymer viscosity – theory

- Gogarty (SPE-1847-E-PA)
- Mobility is sum of oil + water mobility
- Design (target) mobility for mobility control is minimum fluid mobility
- Extremely conservative

Injectivity in simulations

Pressure barrier (SPE-209462)

What happens in case of no-crossflow

Progress of polymer in lower perm layer is limited

Oil viscosity = 50 cp / Polymer viscosity 30 cp / M = 0.50

Oil viscosity = 50 cp / Polymer viscosity 60 cp / M = 0.25

M = 0.025

Oil viscosity = 50 cp / Polymer viscosity 600 cp / M = 0.025

Oil/water separation issues with polymer

Polymer slows down process (viscosity)

- Makes separation more difficult through formation of emulsions
- Use of chemicals to ease separation needs to be carefully considered especially if water is reused for polymer make-up
- Chemicals alone do not appear to be sufficient

Equipment fouling

(SPE-203446)

⁽Aishwariya - SPE-203446)

Factors to consider

- Cost
- Incremental recovery
- Heterogeneity/Layering
- Injectivity
- Pressure barrier
- Separation issues
- Vibration, casing issues (SPE-200084)

Conclusions

- Polymer viscosity selection is not straightforward
- Many factors need to be considered
- Beware simulations
- Lower viscosity often preferred