

IOR/EOR Practices for Enhanced Efficiency in the Evolving Carbon-Conscious Environment

11–12 JUNE 2024 | JAKARTA, INDONESIA

Maximizing Recovery and Sustainability:

Challenges and Innovations in Offshore Polymer Flooding Deployments

Maxence RUIZ

INTRODUCTION – CURRENT CONTEXT

- Oil should remain the main source of energy by 2050
- Challenge = Increasing oil production while reducing the environmental footprint of oil extraction and remaining cost-efficient
- Polymer EOR is developing widely
 - Easy deployment
 - Field proven, > 300 references
 - Cost effective, 3 to 6 \$/bbl of incremental oil
- Sustainable, 50 to 80% CO₂ emissions reductions compared with WF
- Projects ramping up from pilot to full field

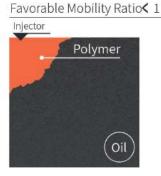
« Production from existing fields declines at a rate of 8% per year in the absence of any plausible fall in global demand» - IEA (2020)

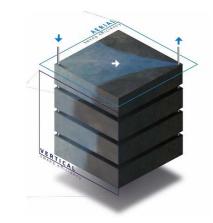
« There are almost no reservoir which are not appropriate for polymer flooding or at least giving serious consideration to polymer » - Ken Sorbie (HWU - 2021)

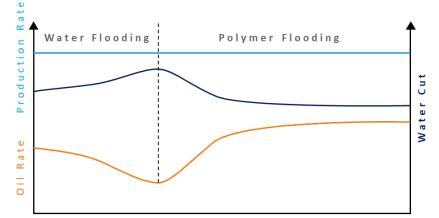
AGENDA

- 1. What are we talking about?
- 2. Deploying polymer flooding offshore Main challenges
- 3. Addressing the challenges and project figures
- 4. Case studies

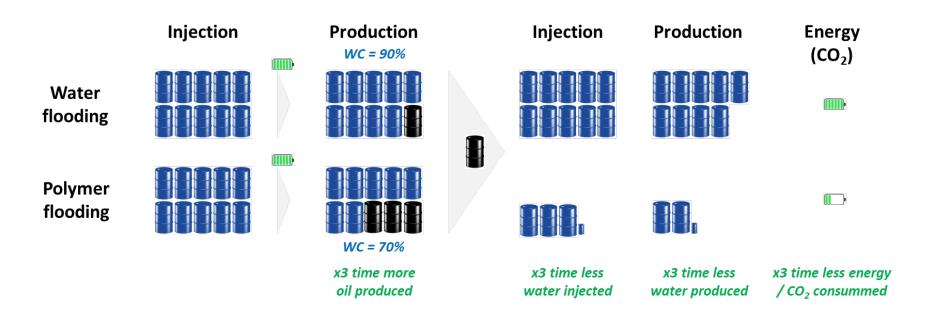
WHAT ARE WE TALKING ABOUT ? POLYMER FLOODING – NOTHING BUT A VISCOUS WATER FLOOD


Unfavorable Mobility Ratio >1


Producer



Producer



WHAT ARE WE TALKING ABOUT ? A SUSTAINABLE SOLUTION

EAGE

48

Jsing Polymer EOR to Reduce Carbon Intensity While ncreasing Oil Recovery

L. Morice¹,G. Dupuis¹, G. Dupuis¹, P. Al-Khoury¹, J. Nieuwerf⁴, C. Favero¹ ¹ SNF

MAIN CHALLENGES FOR POLYMER FLOODING OFFSHORE

- Limited footprint/height
- Limited weight (total/per unit)
- Limited power load
- Chemical logistics between port and platform
- Possible large well spacing
- Polymer chains shearing equipment
- Existing production and WT facilities

MAIN CHALLENGES FOR PF OFFSHORE

Offshore Limitations

Will it be ok?

- Limited footprint/height
- Limited weight (total/per unit)
- Limited power load
- Chemical logistics between port and platform
- Possible large well spacing
- Shearing equipment (subsea choke valves)
- Existing production and Water Treatment facilities

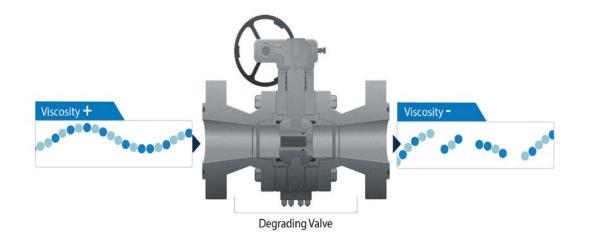
- Does the Injection facility design fit / suitable for the the existing platform?
- How the logistics for polymer can be solved ? What is the best choice?
- Does the technique require significant investment before positive impact?
- Any solution to avoid viscosity degradation and higher chemical consumption?
- How existing production and WT facilities can deal with potential residence time impact?

	EMULSIONS	POWDERS
Form	Liquid	Granular Solid
Handling	Pump transfer	Pneumatic or mechanica transfer
Active Content	50%	90%
Storage Volume		+
Preparation Facilities	+	
OPEX	121	+

- Limited footprint and height
- Limited weight (total or per unit)
- Limited power load

Chemical logistics between port and platform

Туре	IBC	Floquip TT	Isotank	Supply boat
Capacity	1000 kg	1 to 10 T	25	100 to 1000 T
Visual				

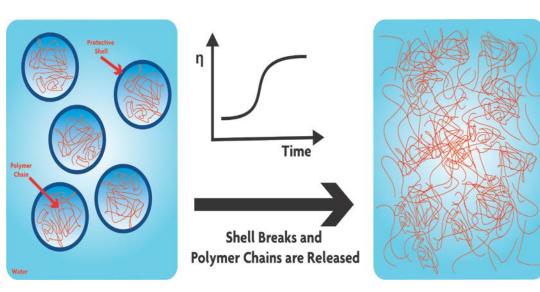


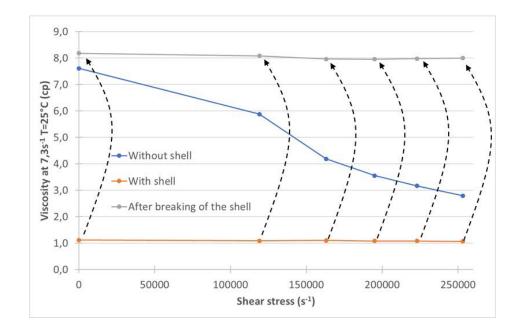
Bulk pneumatic delivery: new double container horizontal bulk silo and dissolution unit general outside appearance

Shearing equipment for polymer chains

Polymer non-shearing choke valves

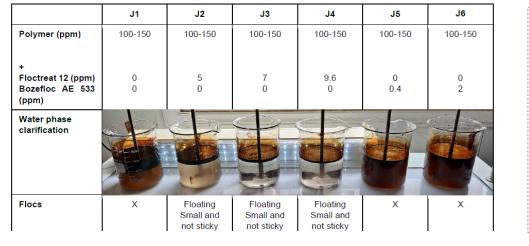
- Designed to control injection pressure or injection flow of polymer solution without inducing significant degradation
- Different technologies depending on process conditions
- Very compact unit
- Patented





Shearing equipment for polymer chains

Delayed Viscosifying Polymers (DVP)



Existing production and WT facilities

Potential issues can be <u>anticipated controlled and mitigated</u> but it requires a multidisciplinary approach To be adapted per context (regulations, performances, power, footprint, ...)

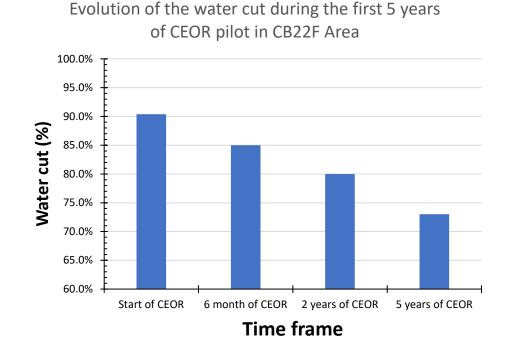
→ Combined Mechanical + Process + Chemical review

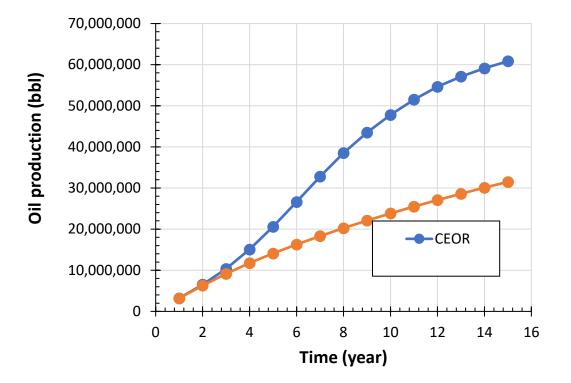
CASE STUDY #1 – SHENGLI Offshore China / POWDER

Reservoir area (km ²)	2.86	Reservoir depth (m)	1,344 – 1,455
Net thickness (m)	25.4	Median grain size (mm)	0.14
STOIIP (MMstb)	67.7	Oil in situ viscosity (cp)	30-70
Porosity (%)	33.3	Live oil in situ density (g/cm ³)	0.9066
Original oil saturation (%)	63	Dead oil viscosity at surface (cp)	264
Dykstra – Parsons coefficient	0.5	Stock Tank crude oil density (g/cm ³)	0.9387
Original reservoir temperature (°C)	65	Initial reservoir pressure (bars)	134
Formation Volume Factor (Bo)	1.06	Bubble point pressure (bars)	102
Average permeability (mD)	1,397	Bubble point pressure difference (bars)	32

Ref. paper : "OTC-31527 - Offshore Large Scale Polymer Flood Implementation at Chengdao Field" Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, March 2022. • STOIIP: 67.7 MMstb

- Average remaining oil saturation : 51%
- EOR project sanctioned in 2019, started end of 2020
- More platforms to develop

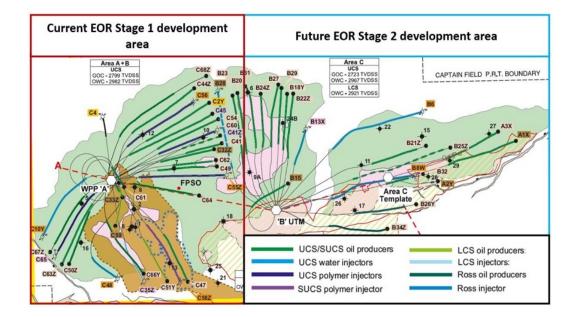




CASE STUDY #1 – SHENGLI Offshore China / POWDER

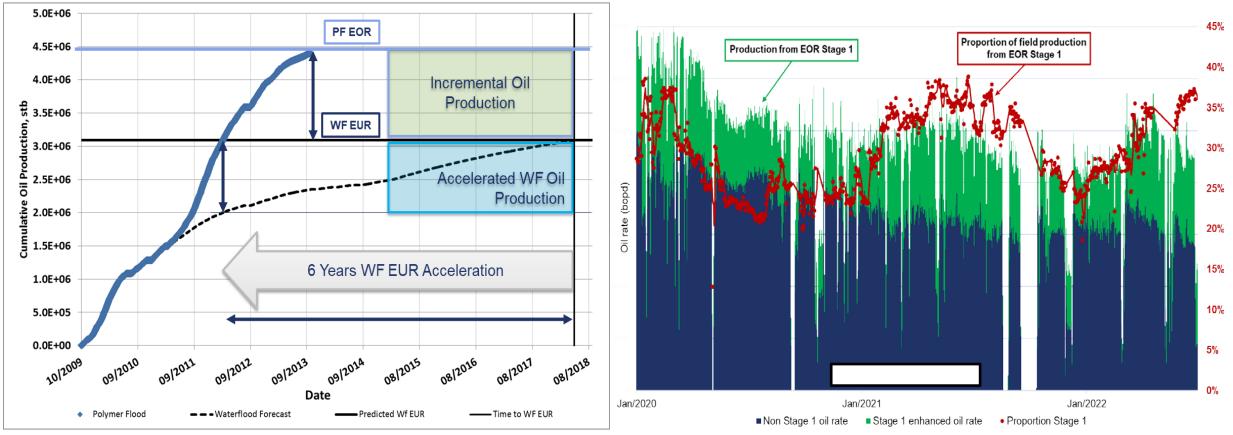
- After 15th years of polymer injection : Planned oil production increases by 29 340 744 bbl
- Acceleration in oil recovery = 8 years
- At iso-oil production : 6 500 000 mT of CO₂ (-52,6%)

Extra Oil production



CASE STUDY #2 – ITHACA Offshore North Sea / EMULSION

- Operated by Ithaca Energy (UK) Ltd (85%) with Dana Petroleum (E&P) Limited (15%)
- Offshore UK North Sea
- Discovered 1977, 1st production 1997
- 1 billion barrels STOOIP
- Sea depth 350ft



- 3 11 Darcy sandstones
- Temperature = 31°C
- Pressure = 1,270psi
- Oil 40 140 cP
- End-point mobility Ratio for Waterflood ~40
- Produced Water Re-Injection
- 94% watercut

CASE STUDY #2 – ITHACA Offshore North Sea / EMULSION

Ref. paper : "SPE 215559 – Creating New Economic Reserves Using Enhanced Oil Recovery Within a Mature Offshore Field- G. Johnson - 2023

TO CONCLUDE

- Challenges for PF Offshore can be addressed provided the platform and operating limitations are well identified
- ✓ Results of Offshore Polymer Flooding are very good
- ✓ Quick and large development of existing projects + New developments in Asia
- \checkmark CO₂ consumption reduced: technique effectiveness, less water, more oil

Green signal !

Maxence RUIZ

mruiz@snf.com