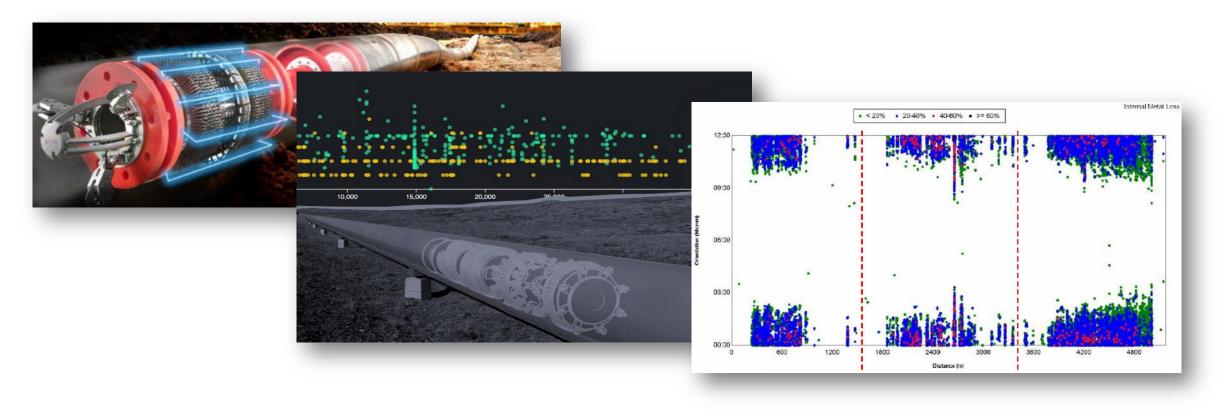
For Internal Use - For Internal Distribution Only

Production Asset Integrity and Corrosion Management: Best Practices and Innovations

29 – 30 April 2025 | BANGKOK, THAILAND

Production Asset Integrity and Corrosion Management: Best Practices and Innovations

Enhancing Effectiveness of Pipeline Integrity Management with PCMP-PL©: A Comprehensive Approach

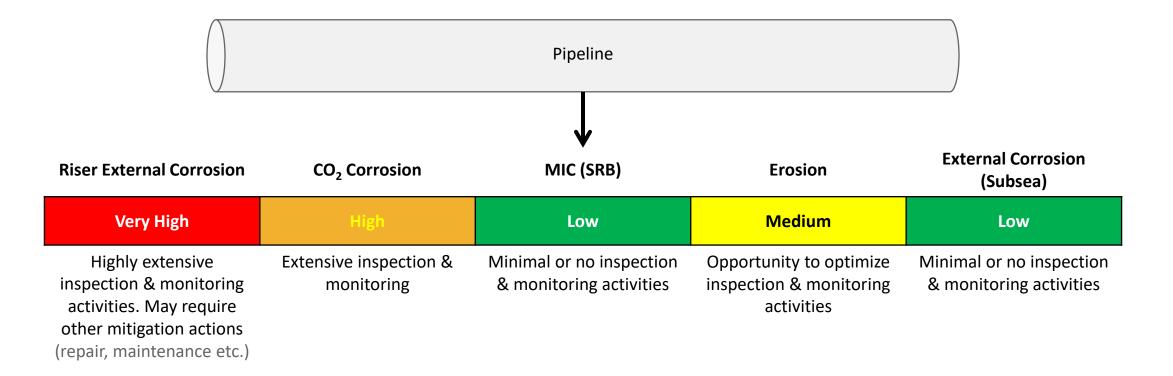

Ahmad Fahdlam Saleh , Ir. M Zaid Kamardin & Ir. Ts. Hambali Chik GTS, PT&HSSE, PETRONAS

- Pipeline integrity management primarily relies on inspection-focused strategies.
- While inspections provide very valuable information about the pipeline's physical condition, continuous corrosion monitoring & control offer additional benefits by:
 - Detecting early warning signs of potential issues beyond periodic inspections.
 - Identifying ahead of time and make proactive decisions that will positively affect the overall integrity of a pipeline.

Case for Change

Case 1

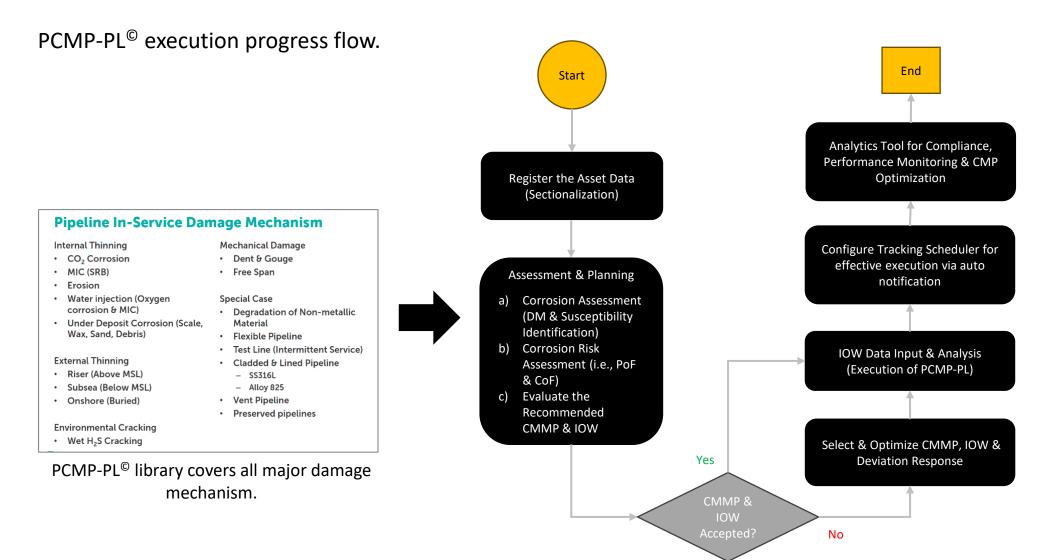
Pipeline was leak and was immediately shut down for repair. The leak causes oil spill. Cost impact including replacement, repair and revenue deferment


Pipeline was found leak in due to corrosion at risers. The leak results in >5mmscf/day of gas release. Rectification activities took >5 days.

Can these Loss have been prevented with Optimum Corrosion Management Strategies and Plan?

- PETRONAS introduced PETRONAS Corrosion Management Program for Pipelines (PCMP-PL[©]) to manage pipeline integrity effectively.
- PCMP-PL aim to strike a **right balance between inspect and control strategies** by focusing on high-risk damage mechanisms while reducing efforts for lower-risk threats.
- For each damage mechanisms (DM), PCMP-PL recommends the appropriate strategies including the Integrity Operating Window (IOW) and appropriate actions to be taken in the event of deviations from these limits.

Achieving best-in-class CMP with $\mathsf{PCMP}\text{-}\mathsf{PL}^{\mathbb{C}}$


The PCMP-PL[©] able to ensure:

Optimize All critical corrosion control mitigation & monitoring activities are Planned included in CMP activities are Compliance optimized to **Planned activities** achieve Risk at are executed ALARP Planned monitoring activities addressed the risk factor Effectiveness Provide basis for planned/recommended CMP activities **Planned** activities deliver desired result Consistent CMP recommendation for all involved pipeline Recommend monitoring limit (e.g., IOW) and action to be taken in the event of deviations from IOW. "World-Class" Pipeline CMP For Internal Use - For Internal Distribution Only

PCMP-PL[©] Methodology (2/4)

PCMP-PL[©] provides clear basis for typical scenarios to identify the severity level & mitigation action

Severity/Risk	Generic and Typical Scenario	Typical Action
Very High	 Defect exceed code & standard limit For age related DM, very short (<1 year) remaining life For non-age related DM, damage has been detected or prolong exposure to severe condition. 	 Require urgent (within 1 year) and immediate mitigation actions Inspection and monitoring usually no longer effective to mitigate the risk
High	 Significant defect that is approaching code & standard limit For age related DM, short (<3 years) remaining life For non-age related DM, exposed to severe condition during normal operation 	 Perform control & monitoring to reduce the risk to acceptable level (Medium or low) More frequent Inspection and monitoring important to ensure effectiveness of corrosion control and minimal excursion to IOW. Require detail assessment to determine best mitigation action (e.g., repair method) and time
Medium	 For age related DM, remaining life > 3 years For non-age related DM, exposed to severe condition during upset condition 	 Apply ALARP principle Rely on inspection and monitoring.
Low	 No or insignificant defect found For age related DM, remaining life > 10 years For non-age related DM, not exposed to sever condition. 	 Minimal inspection and monitoring is required. Accept & Monitor

PCMP-PL[©] Methodology (3/4)

Recommended Corrosion Control & Monitoring Activities & Frequency

Recommended Integrity Operating Windows (IOW) & Deviation Response

Internal Corrosion – MIC

		Sev	erity		Demode
CMP Activities	Very High	High	Medium	Low	Remarks
Biocide Injection Compliance		100%		Not applicable	Injected together with OP
Biocide Soaking	Every 3	Months	Every 6 Months	Not applicable	Pipeline without OP and chemical skid facilities
Operational Pigging (OP) Compliance	Minimum Minimum Every 1 Week Every 2 weeks		Minimum Every 1 month	Not applicable OP shall be based on bacteria count (water sampling)	Higher frequency may be needed based on bacteria count (water sampling and/or OP debris testing) As per PTS 11.35.04 and PTS 11.3501 requirement
Bacteria Count • Water Sampling	Every 1	month	Every 3 months	Not applicable	
Bacteria Count OP Debris 		After every OP		Not applicable	
Delta H ₂ S • Inlet • Outlet	Every 1	L month	Every 3 months	Not applicable	
Optional CMP Activiti	es				
Velocity Monitoring	Every 1	l month	Every 3 months	Every 1 year	
Volatile Fatty Acid (VFA)	Mitigate	Every 1 month	Every 3 months	Every 1 year	
Bioprobe	Mitigate	Every 1 months	Every 3 months	Not Applicable	

Internal Corrosion – MIC (1/2)

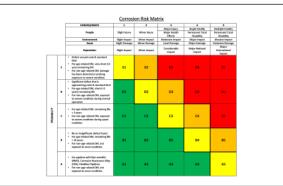
CMP Activities		AIL		Deviation	Response
CMP Activities	Target	Warning	Critical	Warning	Critical
Biocide Compliance Need Close Monitoring	Performed as per CMP	-	Not performed as per CMP	-	Determine and mitigate reason for missing injection e.o. empty drum, pump failure etc. Carry forward (increase frequency) OP if issue persist. Increase bacteria count (water sampling) monitoring frequency Carry forward OP if issue extended
OP Need Close Monitoring	Performed as per CMP	Delay < 1 week	Delay > 1 week	Verify with Bacteria Count monitoring Inject additional BI to compensate missed OP. Batch injection, nignect BI at 500ppm for 8 hours. For continuous injection: Low Risk – No action Medium Risk – Increase dosage by 25% Conduct additional bacteria count Plan for OP as soon as possible (within 3 months)	 Inject additional BI to compensate missed OP Increase bacteria count monitoring frequency and conduct additional bacteria count Plan for OP as soon as possible (within 1 months)
Bacteria Count – Water Sampling Need Close Monitoring	Before OP: < 10 ³ CFU During OP: <10 ¹	Before OP: >10 ³ CFU During OP: >10 ⁴ CFU	Before OP: > 10 ⁵ CFU	Verify BI injection If issue persist, increase OP frequency	Adjust BI injection Verify with time-to-kill test result Increase OP frequency
Bacteria Count - OP Debris Need Close Monitoring	< 0.5kg/km for crude line < 0.25kg/km for gas line < 104 CFU	> 0.5kg/km for crude line > 0.25kg/km for gas line > 10 ⁴ CFU	-	Redo OP until cleanliness target is achieve For future OP, increase OP frequency until bacteria count target is achieved.	-
Delta H ₂ S Inlet Outlet	<10ppm	>10ppm	-	Verify with BI Injection Increase monitoring frequency Verify with other monitoring parameter	-

PCMP-PL[©] Methodology (4/4)

	A. PIPELINE DESIGN DATA											
Pipeline Category	Offshore	Operator			Design	Code	ASME B 31.8					
Region	Central	Pipeline Service	Export Loading Line	11		Design	1.00					
From	OFF001	Pipeline Status	Active		(bar)	MAOP	2.00					
То	OFF002	Design Life	12		(224)	Operating	3.00					
Length	12.00	Year Commissioned	1920			Design	12					
Diameter	23	Materials of Construction	12		Temp. (°C)	Operating	13					

B.PIPELINE HISTORY									
	Final Risk	Risk Rating	Governing Threat						
Risk Assessment	B5	High	3rd Party Damage Onshore						
Modification & Alteration	• N/A								
Inspection & Monitoring	 FFS completed: No anomalies chal accepted and monitored response. (I 	llenge MAOP in inspection 2020 up to 2 PIR June 2021)	2026. Girth weld and dent anomaly are						
Failure & Repair History	 Verification dig up for 1 dent defect at KP 79 (near M12 station) in Aug 2021. (PIR June 2021). 								
Service Change	Service Change • N/A								

	C. OPERATIONAL DATA										
CO2 Concentration	12.00	Water Content (ppmv)	17.00	HAC Concentration (ppmV)	14.00						
H2S Concentration	16.00	Dew Point Temp. (°C)	111.00	O2 Concentration	19.00						
Bacteria Count (CFU)	13.00	Sand Production (kg/day)	18.00	Hg Concentration (ug/m ³)	15.00						


D. PIGG	D. PIGGABILITY E. INTEGRITY CHEMICAL				F. CORROSION	MONITORING		
Piggable	Yes	Chemical	Inj. Mode	Inj. Point	Dosage	Avai. (%)	Туре	Location
Pig Type	BiDi Pig	Biocide	As and when	IP 001	12	110	Corrosion Probe	KUL
Launcher	LTN_001	Inhibitor	required				Concolor Trace	NOL .
Receiver	RTN_001							

l	G. CORROSION CONTROL										
	PL Section MOC			OD (mm)	WT (mm)	Coating	CP				
	OFF002	Riser Below Water	12 Sour	12	12	12	SACP				

	H. CONSEQUENCES OF FAILURE (COF)									
People	Environment	Asset	Reputation	Combined						
2	2	3	5	5						

I. CORROSION ASSESSMENT									
DM Category	DM	Description	Susceptibility	Corrosion Rate					
	Galvanic Corrosion	• TEST	Active	0.00					
External	Atmospheric Corrosion	TEST	Active	0.00					
	Stray Current Corrosion	TEST	Not Susceptible	0.00					

	J. CORROSION RISK ASSESSMENT										
DM Category	PL Section	DM	PoF	CoF	Corrosion Risk	Remarks					
External	Riser Below Water	Atmospheric Corrosion	с	5	Very High	• test					

	K. CORROSION MONITORING AND MITIGATION PLAN (CMMP)										
DM	Corrosion Risk	Monitoring Parameter	Monitoring Activities	Monitoring Location	Monitoring Frequency	Responsible Party					
Brittle Fracture	High	OP Compliance	Operational Pigging		Weekly	Process Engineer					
Corrosion Under Insulation - Carbon Steel	Low	Corrosion Probe	Corrosion Rate Monitoring		Daily	MCI Head					
Corrosion Under Insulation - CRA	Low	OP Debris	Operational Pigging		Quarterly	Reliability Engineer					
Atmospheric Corrosion	Very High	Acetate	Chemical Injection		Fortnightly	Inspection Technician					

	L. IOW & Deviation Response									
DM	Monitoring Parameter	Parameter Criticality	IOW-Lower Limit			IOW-Upper Limit			Deviation Response	
				w	т	т	w		Warning	Critical
Brittle Fracture	OP Compliance	NCM (Need Close Monitoring)	<=3.00	<=5.00	>5.00				N/A	N/A
Corrosion Under Insulation - Carbon Steel	Corrosion Probe	NCM (Need Close Monitoring)	<=7.00	<=11.00	>11.00				N/A	N/A

Tag ID: Fluid FU1 EDH Tag ID: Parameter: pH Unit: n/a Start Date: 13/07/2023 End Date: 01/08/2023 Period:* Weekly Image: Control of the second											
Parameter: pH Unit: n/a Start Date: 01/08/2023 Period:* Weekly Display curves: Min Avg Max Generate Chart 16.75 14 9 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0	Corrosion Rat	te Monit	toring Cathodie	: Protection	Sampling Analysis	Operational Data	Operation	al Pigging	Chemical Injection		
Start Date: 01/08/2023 Period:* Veekly Display curves: Min Avg Max Cenerate Chart 16.75 14 9 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0	Tag ID:			Fluid FU1		EDH Tag ID:					
Period:* Weekly V Display curves: V Min V Avg V Max	Parame	eter:		pН		Unit:		n/a			
Display curves: Min Avg Max Generate Chart 16.75 14 9 8 4 0	Start Da	Start Date:		13/07/2023		End Date:		01/08/20	23		
Generate Chart	Period:	*		Weekly 🗸							
	Display curves: Min V Avg V Max										
14 9 8 4 0	Generate Chart										
B e Alle											
B e Alle											
4		14									
*											
*	Value										
4	ored										
	Monit										
		4									
10/07/2023 17/07/2023 24/07/2023 31/07/2023		Ŭ	10/07/20	23	17/07/2023	24/07/202	23	31/0	07/2023		
🔶 Max 🔶 Average 👘 Min											

Monitored Values		
Monitored Date 🗢	Monitored Value	Action
13/07/2023 11:38 AM	9.00	
20/07/2023 05:15 PM	10.00	2
27/07/2023 05:22 PM	8.00	🖾 🛅
31/07/2023 04:12 PM	3.00	2
	✓ Page 1 of 1 → → 20 ∨	View 1 - 4 of 4

Add New Download as Excel Upload as Excel Download Template

Big Idea

PCMP-PL© Digital Solutions

Current State

Non-Standardized & Time

Inconsistent approach &

non-optimized CMP

methodology leading to

• Time consuming & requires

work process

issue

readily accessible

extensive data collection, repetitive and redundant work

Document & data is stored in

• Execution is not or manually

Inadequate Effectiveness

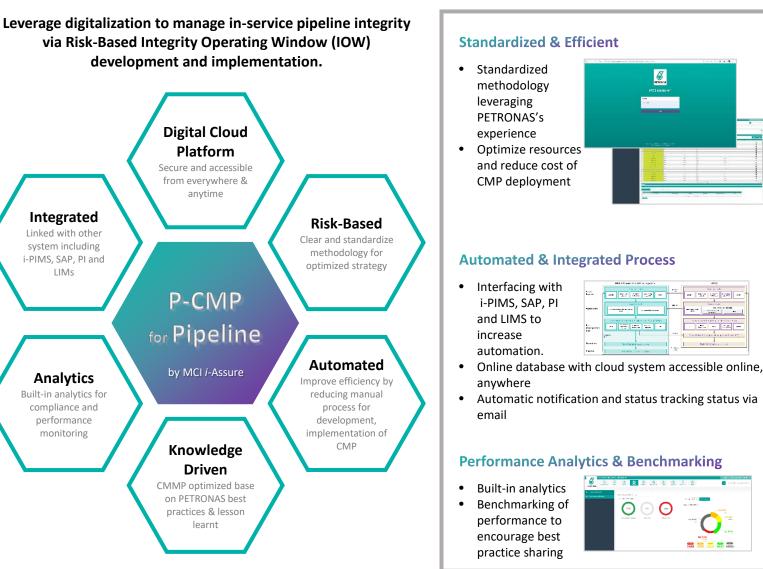
IOW data and CMP KPI is not

consistently analyzed & tracked

optimize future monitoring plan

Review & Monitoring

Data is not leveraged to


individual/local server and not

tracked leading to compliance

Consuming

Desired Future State

CMP Development

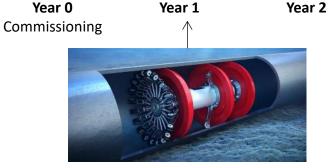
CMP

Implementation

CMP Analysis and Optimization

For Internal Use - For Internal Distribution Only

Case Study 1 – Loss of Opportunity for Proactive Prevention



Corrosion Inhibitor (CI) is injected but availability, dosage and performance is not consistently monitored and analysed

Year 4

No Significant Findings

55% Metal Loss!

RCA Findings

- 1. Cl dosage has not achieved as per intended design requirement
- 2. Cl residual monitoring was not part of monitoring program; hence no monitoring is conducted.

Year 3

3. The corrosion threat also contributed by not having the specified CI availability for the pipeline

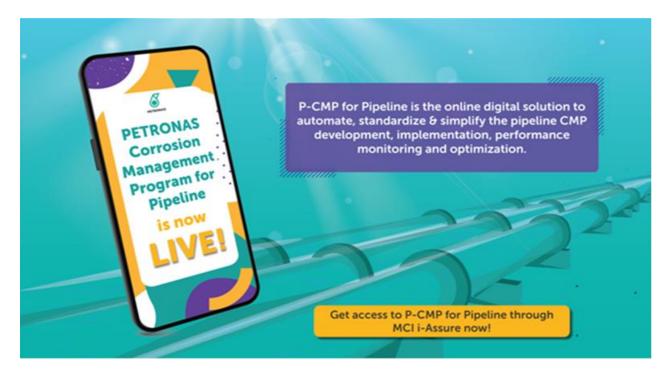
Case Study 2 – Operational Pigging (OP) Frequency Optimization

Why we need to perform Operational Pigging (OP)?

Routine pigging of pipelines is implemented to maximize operational throughput, ensure continuous operation and remove debris or deposits (liquid or solid) that may restrict flow, induce corrosion growth or prevent the effectiveness of integrity chemical application such as Corrosion Inhibitor, Biocide or etc.

Extract of PCMP-PL Guideline on OP

Severity	Damage Mechanisms	Recommended OP Frequency		
Very High	MIC	Weekly		
llich	MIC	Every 2 weeks		
High	CO ₂ Corrosion	Every 3 months		
Medium	MIC	Monthly		
wedlum	CO ₂ Corrosion	Every 6 months		


Example of OP Optimization Results

No.	PL	Internal Threat Risk		RL based on	Current	New OP Freq	
		Main DM Risk		ICR	OP Freq		
1	PL 077	CO ₂ Corr.	A3 - Low	5 years	Monthly	Every 3- Months	
2	PL 259	CO ₂ Corr.	A3 - Low	10 years	Monthly	Every 3- Months	
3	PL 261	CO ₂ Corr.	A3 - Low	40 years	Monthly	Every 3- Months	
4	PL 262	CO ₂ Corr.	A3 - Low	21 years	Monthly	Every 3- Months	
5	PL 263	CO ₂ Corr.	A3 - Low	4 years	Monthly	Every 3- Months	
6	PL 336	MIC, CO₂ Corr.	A3 - Low	20 years	Monthly	Monthly	
7	PL 337	CO ₂ Corr.	A3 - Low	53 years	2 x Monthly	2 x Monthly	
8	PL 338	CO ₂ Corr.	A3 - Low	15 years	2 x Monthly	2 x Monthly	
9	PL 293	MIC, CO ₂ Corr.	A3 - Low	24 years	3 x Monthly	3 x Monthly	
10	PL 350	CO ₂ Corr.	A3 - Low	24 years	2 x Monthly	Monthly	
11	PL 380	CO ₂ Corr.	A3 - Low	82 years	2 x Monthly	Monthly	

- Superior corrosion management program is critical to ensure integrity of asset.
- Aligned with digital transformation agenda, PCMP-PL[©] is currently available at online platform that automates, standardizes, and simplifies the pipeline CMP lifecycle.
- This digital transformation for CMP includes key features such as a secure and accessible in cloud platform, a risk-based approach for optimized strategies, automation to reduce manual processes, knowledge-driven optimization based on best practices, and built-in analytics for compliance and performance monitoring.

