

Challenges in Managing Mercury in Field Development and Production

8–9 JULY 2025 | KUALA LUMPUR, MALAYSIA

Application of Non-conventional Technologies in Mercury Removal from Natural Gas Processing Plant

Biography – Dr. Raymond Ooi

Dr. Raymond Ooi is an experienced Chartered Professional Engineer with Engineers Australia and UK. He is a Process Engineer with a PhD in Chemical & Environmental engineering and has over 20 years' experience in the field of Process Engineering Design and Project Management with in-depth technical knowledge and extensive R&D involvement with both academia and industry. Throughout his career, he has had extensive working experience in areas of Field Development, Design, Engineering and Operation roles with companies Shell, PETRONAS & Worley. His current role in OLEOLOGY is as Director of Engineering and focal point for consulting, design and R&D initiatives of the company.

Introduction - Conventional MRU

- Fixed-bed MRU adsorbent systems with media
- Media absorbs mercury through chemisorption/ physisorption mechanisms
- Challenges:
 - Need for conditioning of gas pretreatment
 - High replacement and disposal costs
 - Fluctuating mercury concentration levels
 - Space and weight constraints (offshore applications)

Non-Conventional Mercury Removal

- MYCELX's MERSEP is a patented coalescing system
- MYCELX's MERSEP offers:
 - Smaller footprint
 - Enhance mercury removal efficiency Hg is recovered
- Standalone set-up
- Hybrid setups with the MRUs improve:
 - Extend MRU bed life

MERSEP – Operating Principles

- Coalescer NOT Filter
- How is Hg captured on the coalescer?
 - Bonding Amalgamation with dissimilar metals (Hg with Gold)
 - Coalescing Gaseous /Aerosol droplets with metallic bonding
 - Draining Gravity draining by capillary effect (braid)

Background

- Gas plant in Asia experiencing high mercury in gas feed post production:
 - Safety and equipment integrity
 - Risk of shutdowns and higher maintenance
 - Non-compliance with environmental, sales specifications.
- Urgent, interim solution required a fast turnaround and minimum modification

Operating Parameters	
Flow Rate	230 – 280 MMSCFD
Pressure	800 PSIG (55 BARG)
Temperature	30°C
Configuration	2 x 100% (Duty / Standby)

Design Set-up/ Configuration		
Total MERSEP Coalescer	24 nos. per vessel	
Material of Construction for MERSEP Coalescer	 Polypropylene and glass fibre MERSEP braiding 	
MERSEP Coalescer Size	6" (OD) x 40" (Length) per cartridge	
Operational Period	3 years – prior to delivery of MRU beds	

Intervention-Solution

Computational Fluid Dynamics (CFD) Modelling – Flow distribution

Velocity contours on filter OD.

Coalescer Performance

Parameter.	Value	Remarks
Inlet Hg content in Gas	100 – 125 μg/Nm ³	0.65 kg/day – 0.99 kg/day
Outlet Hg Content in Gas	10 - 15 ng/Nm3	Up to > 99.99%
Pressure drop across	<10 PSI ΔP	Min. pressure drop

Case Study: Summary

- Effective mercury removal- efficiency up to 99.9%
- Strategically installed upstream for early protection
- Reduced maintenance and downtime
- Improved HSSE and environmental compliance
- Solution for Greenfield and Brownfield plants

