

Challenges in Managing Mercury in Field Development and Production

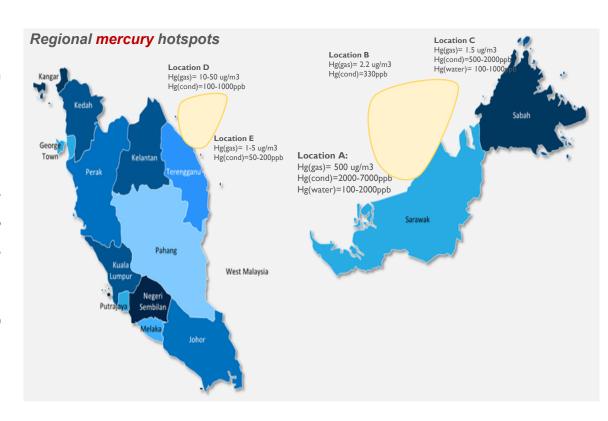
8–9 JULY 2025 | KUALA LUMPUR, MALAYSIA

Challenges in Managing Mercury in Field Development and Production

A New Approach in Managing Mercury Risk through Mercury Partitioning Chemicals in High Mercury Condensate Production System

Lakshmi N Koyyalamudi/Abigail Lian De Cruz/Lee Kok Hock/ Hizbullah Marwadi

Table of Content


- 01 Background
- 02 Facts & Challenges
- **03** Experimental Concepts
- **04** Results & Discussion
- 05 Conclusion

Background

- Mercury concentrations in Southeast Asia, especially in Malaysia, are rising in produced fluids, reaching 2000-7000 ppb in condensate and up to 2000 ppb in the water phase.
- Elemental mercury (Hg⁰) is the dominant species.
- Key Impacts on HSE controls, engineering modifications like Mercury Removal Units (MRUs), preventive measures for asset integrity, and addressing potential threats to sales quality and environmental discharge impacts.
- Emerging levels necessitate "Tailor Made" solutions to manage Hg holistically and efficiently.

Facts & Challenges

- Mercury exists in a variety of speciation states
 - Not stable and undergo changes in their physical states and chemical compositions at dynamic process conditions.

Solubility of mercury compounds @ 20C

Solvent	Hg ⁰ solubility(ppb)	HgCl2 solubility	(Ch3)2 Hg Solubility
water	50	6.6 g/100ml	<1.0ppm
Methanol	549	51.5 g/100ml	Soluble
1-propanaol	527	23.2 g/100ml	
Acetone	520	140 g/100ml	
Mono-ethylene glycol(MEG)	182		
Hexane	1200	11500ppb	Miscible

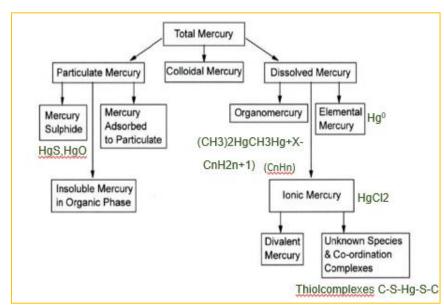
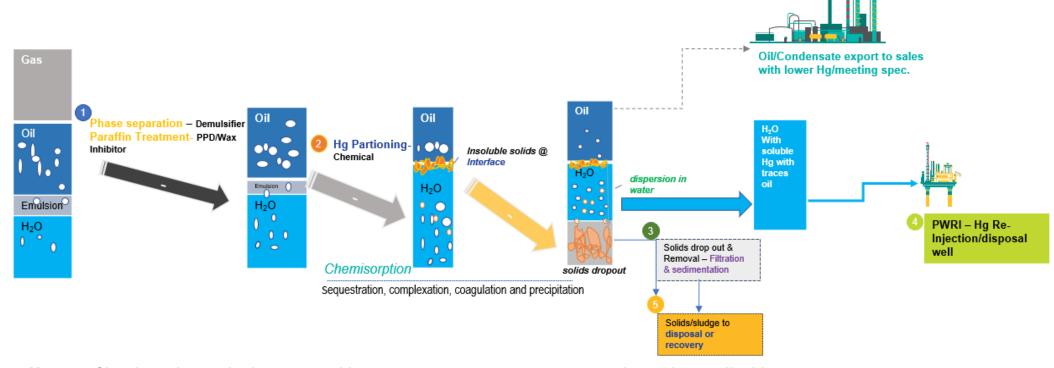
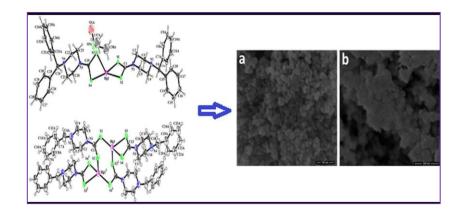


Fig 2: The mercury species/groups


- Mercury will partition to different phases and components (arrays) based on:
 - solubilities of the species in each matrix.
 - oxidation states (Hg^o, Hg+1, Hg+2).
 - composition of the matrix.
- Challenges often arise with sampling and analysis when establishing reliable data trends.

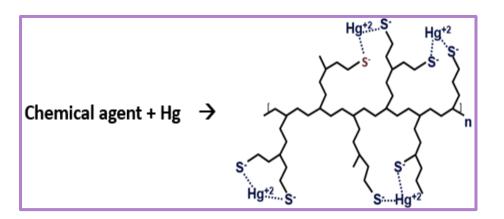
Experimental Concept

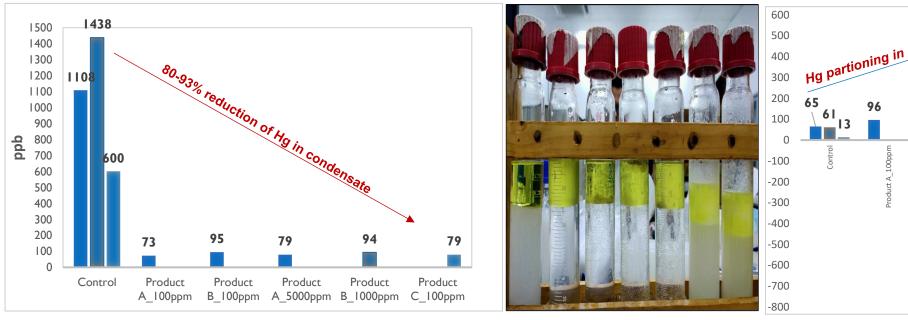
- The concept of Hg Chemisorption methods was assessed.
- A 5-stage process was designed to enable the adoption of a future state modus operandi, optimize
 engineering design, and maximizing HC value.


Mercury- Chemisorption methods concept with 5 process stages to manage mercury in condensate liquid streams

"Tailor- Made" Chemistries

Chemisorption methods using novel chemistries have been studied in this case; the aim is to chemically react
with the Hg metal or its compounds to result in salts that are insoluble in crude oil and soluble in water; thus,
allowing phase partioning to the aqueous, or forming insoluble compounds that will form sludge, separating
from both phases.




Fig 4: Mercury- Chemisorption methods concept with 5 process stages to manage mercury in condensate liquid streams

"Tailor- Made" Chemistries

- All chemicals significantly reduced condensate mercury from 1100-1438 ppb to 70-95 ppb, achieving 80-93% reductions in the LAB scale.
- Positive Improvement of Hg incremental in water phase up to 139ppb and further high to **521ppb** at 5000ppm (120-700 % from baseline Hg in water 13-60ppb)

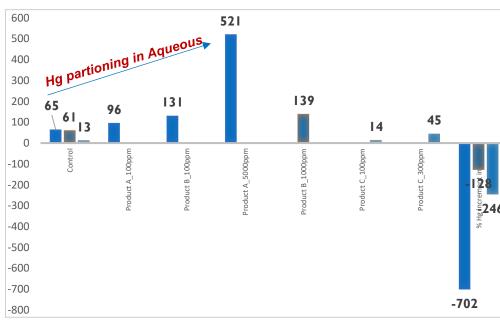
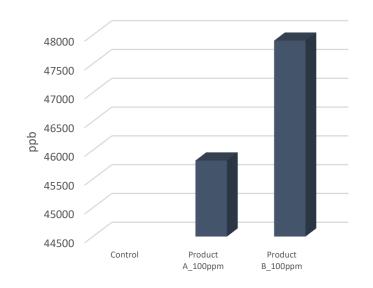
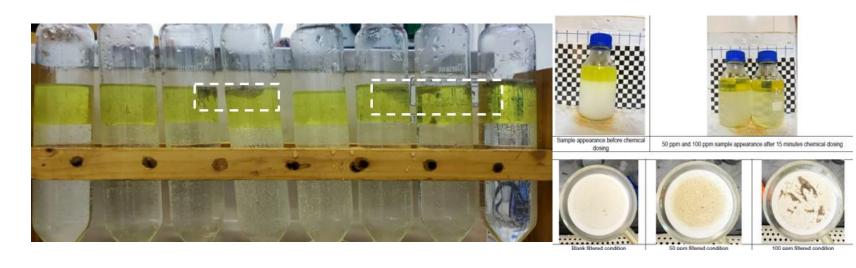


Fig 5: 80-93% reduction of Hg in condensate fluids

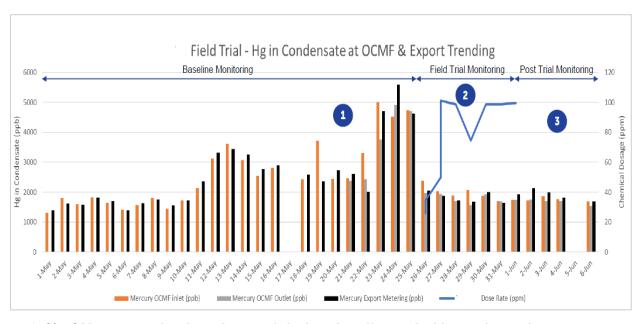

Fig 6: Significant Improvement of Hg partioning in Aqueous Phase



"Tailor- Made" Chemistries

Products has shown insoluble salts/solid up to 47000ppb of Hg

The Hg is being transformed into insoluble salt/solid particulates through chemical addition in the total fluid



"Field Results"

 ~67% total Hg reduction in condensate with the chemical treatment

Average V 2010 Inlet, ppb	With Hg Agglo V 2010 Outlet,ppb	Overall Hg Reduction %
5630	1836	67

 Observed fluctuation of Hg in condensate that challenges to establish a good trend

~67% of Mercury reduction observed during the pilot period in total condensate liquid stream

"Conclusions"

- Hg chemisorption methods have shown positive reduction of Hg in condensate, with partitioning into solid and aqueous phases from both experimental proof of concept trials in the lab for field applications.
- The biggest challenge lie around sampling and analysis which are particularly tricky.

Thank You for Your Attention!