

Challenges in Managing Mercury in Field Development and Production

8–9 JULY 2025 | KUALA LUMPUR, MALAYSIA

Challenges in Managing Mercury in Field Development and Production

Application of Non-conventional Technologies for Mercury Speciation and Treatment

Paul Callaghan

Introduction

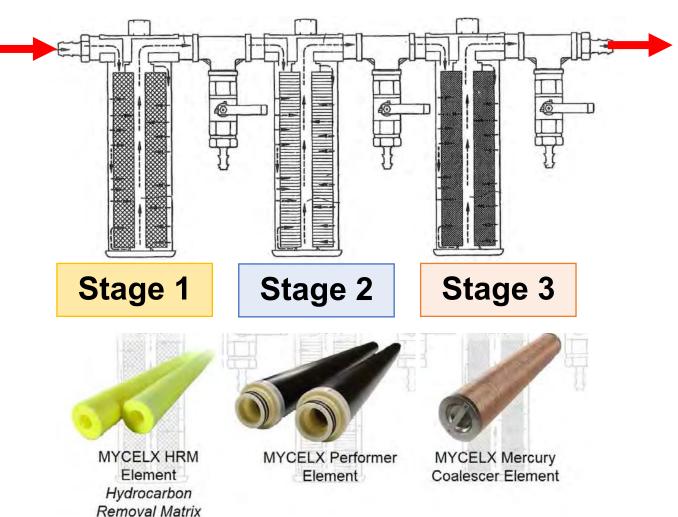
- Mercury speciation plays a role:
 - Effectiveness, selection, service life (bed) depend on speciation.
- Traditional Fixed-bed adsorbents elemental mercury (Hg^o).
 - Hg Complexity
 - Inadequate to remove ionic / organically mercury.

Type of Mercury Species

Mercury Species	Form / Type	Examples	Occurrence in Oil & Gas	Properties	Removal Challenges
Elemental Mercury	Metallic, volatile, free state	Droplet / vapor, gaseous Hgº	Gas, condensate, crude oil streams	Volatile, migrates with gas phase	Removed using standard fixed-bed adsorbers
Inorganic Mercury	lonic, oxidized, water-soluble	HgCl ₂ , Hg ²⁺ , HgS salts	Produced water, sour gas, fluids	Soluble, reactive, forms complexes	Requires specialty or chemical treatment
Colloidal / Organic Mercury	Carbon-bound, stable, lipophilic	Methylmercury, phenylmercury	Crude oil, condensate, biogenic	Stable, oil- soluble, persistent form	Evades beds, needs advanced removal

Challenges in Characterization of Mercury

- Limitation of conventional laboratory instruments.
- Sampling uncertainties.
- Species unstable during sample handling.



Run through for a defined duration.

Post Trial

- Mercury concentration tested via:
 - Atomic Absorption (AA) or
 - Inductively Coupled Plasma (ICP) techniques
- Directly Scalable

Stage 1

Stage 2

Stage 3

Isolated Colloidal / organically bound Hg

Isolated Ionic Hg

Isolated Elemental Hg

 Capture Colloidal / Organic

- Capture ionic mercury adsorption method.
- High efficiency precipitating ionic mercury.

 Capture (coalesce) elemental mercury.

Binds organics into cohesive mass

The methodology allows:

- Enables accurate mercury speciation assessment.
- Uses time-weighted averages, not grab samples.
- Captures behavior under real conditions.
- Improves technology selection and process design.
- Supports environmental and regulatory compliance.
- Ongoing field assessment

Methodology Conclusion: <u>Assured Design</u>

- Speciation = Appropriate Design / Tech Selection
- Appropriate Design = ESG
- Appropriate Design = CAPEX & OPEX (optimized)
- Ongoing Use = Assurance or Adjustment
- Ongoing Use = Optimized OPEX
- Directly Scalable & Reduced Waste
- ONGOING EFFECTIVE Hg MANAGEMENT SOLUTION

THANK YOU