

Challenges in Managing Mercury in Field Development and Production

8–9 JULY 2025 | KUALA LUMPUR, MALAYSIA

Challenges in Managing Mercury in Field Development and Production

Mercury Management In Condensate Production

Isabelle Kueh Operations Process Engineer (FPSO)

Session Managers

Juhaida Mohd Johar, PETRONAS

Hanto Yananto, PT Pertamina Hulu Energi

ICHTHYS FIELD

Field is 220 km NW of mainland Western Australia:

- Located 820 km SW of Darwin.
- Connected to LNG Plant in Darwin, by dry 890 km Gas Export Pipeline (GEP).

Central Processing Facility (CPF)

- Gas and Condensate/MEG Separation
- Gas Export Compressors

Floating Production and Storage Offtake (FPSO)

- Condensate & MEG Separation, and MEG Pre-Treatment, Regeneration, Reclamation Systems
- Condensate Mercury Removal System
- Flash Gas Mercury Removal System

S-231-P-001-B

Total Condensate Rundown Flow Circa. 450 - 460 m3/h

S231 Condensate Mercury Removal System

Problem Statement & Trial Objective

- Pre-filter elements are blocking frequently, with replacement rates higher than the benefit of keeping the MRU online
- MRU only removes elemental mercury but not particulate mercury
- Risk of blocking the internal pores of MRU adsorbent pallets reduction in Hg removal performance
- Glycol carryover will permanently degrade the bed
- Downstream Coalescer has a low DP limit and is costly to maintain (circa. 500K
 \$AUD per changeout).
- Ichthys Field elemental mercury levels are relatively low (20-50 ppbv), but may increase to ~200ppbv in later field life

Pre-Filter Selection & Trials

Year / Trial		Changeout frequency	Filtrate sample
Year 1 Trial #1	Facility Start up 10 micron polypropylene filter • 99.98% removal efficiency	24 hourly (unmanageable)	Inorganic material, Iron Sulphide, corrosion product, trash (bush wire etc)
Trial #2		2 - 4 days	>95% of particles less than 20 micron
Year 2 Trial #3 & #4	20 micron polypropylene filter 20 micron glass fibre filter	4 days	
Trial #5	10 micron glass fibre filter	7 – 8 days	High BTEX content
Trial #6 & 7	10 micron polypropylene filter	3 days	Iron sulphide from Rich MEG Stream partitioning into condensate
Year 3 Trial #8	40 micron polypropylene filter	9 days	
Year 4 Trial #9	 Marksman PFT High Flow 70 micron polypropylene filter (Nominal) Depth Style Filter (Less surface area, less dirt holding capacity) 99.98% removal efficiency 	N/A Filter is too coarse for application	Iron Sulphide, Mercury Sulphide particulate solids

Rapid Fouling in Mercury Pre-treatment System

- Rapid fouling of condensate pre-treatment filters
- Pre-Filter changeout takes approximately 1.5 days (3 shifts)
- Coalescer Element changeout takes 2 weeks + including isolation, permits, draining, and purging
- Extended downtime impacts production
- H&S Risks due to BTEX and Mercury Exposure to personnel
- Offshore: 4 Operations Technicians required, under full PPE and Breathing Apparatus

Coalescer Element Changeout

Coalescer DP vs Pre-Filter DP

MEG in Condensate Impact to Total Mercury

- Rundown rates significantly impact MEG in condensate
- Presence of particulate solids in the MEG Phase
- Coalescer is designed to remove free and dispersed MEG NOT dissolved
- Accumulation of free and dispersed MEG (plus water) in coalescer boot

Free MEG in Coalescer

- MRU Inlet Limit is 75 ppmv free aqueous (water + MEG)
- MEG drained from the coalescer boot showing approx. 8-9 v/v% water content
- Particle size distribution analysis of solids in the MEG sample showing majority of the solid sizes $>6~\mu m$, and $<15~\mu m$
- Observed Particulate mercury are < 0.22 μm and/or present in organic/elemental form ___

Summary

- Managing total mercury in a closed-loop MEG-condensate system is challenging
- Both undersized and oversized filters can be ineffective, leading to operational challenges
- Maintain good quality in recycling MEG system, in particular low divalent ion content,
- Avoid iron sulfide (FeS) formation that can partition into the condensate and contribute to filter/coalescer blockages.
- High aromatic content in the system may cause polypropylene materials in prefilters to swell
- Key is maintaining condensate product value and managing the costs and (H&S) risks associated with filter element and catalyst bed changeouts

Challenges in Managing Mercury in Field Development and Production

Thank You

Isabelle Kueh
Operations Process Engineer (FPSO)

Coalescer Design

- Design Flow 562 m3/h Condensate
- 102 No. of Elements
- Total Filtration Area 109m²
- Filter Dimension 0.95m x 1.524m
- Designed to achieve free water content of 15 ppmv
- Interface liquid level in the filter coalescer is controlled via LCV

Water Balance in Hg Pre-Treatment

CORRECTED Rev B Calculation - REV B31/07/2024 Sample Set Trial 4

