

Challenges in Managing Mercury in Field Development and Production

8–9 JULY 2025 | KUALA LUMPUR, MALAYSIA

Challenges in Managing Mercury in Field Development and Production

Heteroligand Gold Nanoprobes: A Plasmonic Approach to Mercury Ion Sensing

Safwan B A Salama, Tg M Uzaini B Tg Mata & Suriani Bt Hj Yaakoba, ChM Dr Sharizal B Mohd Azam Shah Wonga,

Ku Syaridatul Irma Ku Ismail^b, Amir Syahir Amir Hamzah^b

^aPetronas Research Sdn. Bhd.,Bangi, Malaysia

^bUniversiti Putra Malaysia, Seri Kembangan, Malaysia

- Current mercury measurement and detection for water quality monitoring requires laborious sampling and timely analysis, e.g. tedious digestion and preparation steps prior to analysis.
- Often, the concentration reported via analysis gives low value, yet extensive resources were used.
- Thus, gold nanoparticle combined with peptide offers instantaneous mercury detection in water for operators via a simple "Mercury screening kit" to indicate its presence.

Figure 1: Sample of current mercury measurement in industrial wastewater

Figure 2: Illustration on aggregation of ligands on gold nanoparticles to Hg²⁺

Methodology

Tripeptide Design and Selection

Tripeptide Solution
Preparation

Tripeptides-AuNPs Preparation

Testing on actual sample

Semi-Quantitative Screening of Tripeptide-AunPs

Tripeptide Selection

- 11 novel tripeptides were selected as ligands for the gold nanoparticle sensor from 169 peptides model target purity of 95-99% using solid phase peptide synthesis method.
- Verification of the purity and the peptide grade (based on molecular weight) determined via HPLC & MS Spectroscopy.

Solid phase peptide synthesis (HCH)

- Design of AuNP-peptide library constructed for mercury detection
- Limitation screening done via naked eye observation, potential improvement via microplate reader.

Semi Quantitative Screening

25% aggregation	50% aggregation	100% aggregation
	25% aggregation	25% aggregation 50% aggregation

- The level of aggregation was observed according to color ratings.
 - Low level (25% aggregation) = red-purple (+)
 - Mid level (50% aggregation) = purple (++)
 - High level (100% aggregation) = blue (+++)
- Photo image of colorimetric semi quantitative screening.
 Addition of mercury will result in different colour changes

	No.					Me	etal ions				
		As ³⁺	Cd ²⁺	Co ²⁺	Cu ²⁺	Cr³+	Fe ³⁺	Hg ²⁺	Ni ²⁺	Pb ²⁺	Zn ²⁻
			N	IONOLI	GAND						
1	PCH							+++			
2	NCH							++			
3	DCH							+			
4	MCH							+			
5	HCD							+			
6	HCM							+			
7	DCD										
8	MCM	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++
9	QCW							+++			
10	QCF							++			
11	QCY							++			
12	GSH							++			
			H	ETEROL	IGAND						
13	PCH/GSH							+++			
14	PCH/NCH							+++			
15	PCH/DCH							+++			
16	PCH/MCH							+++			
17	PCH/HCD							+++			
18	PCH/HCM							++			
19	PCH/DCD										
20	PCH/MCM	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++
21	PCH/QCW	++	++	++	++	++	++	+++	++	++	++
22	PCH/QCF	++	++	++	++	++	++	+++	++	++	++
23	PCH/QCY							+++			
24	NCH/GSH							+++			

Gold nanoparticle interaction with tripeptide

Tripeptide	Size particle (d. nm)	PdI	Zeta potential (mV)
Bare AuNPs	25.63 ± 0.59	0.201	-33.87 ± 2.48
PCH	71.93 ± 0.99	0.455	-27.90 ± 1.65
NCH	63.17 ± 1.87	0.544	-31.83 ± 0.99
DCH	24.98 ± 0.08	0.189	-39.37 ± 3.87
MCH	39.78 ± 1.07	0.564	-34.47 ± 1.05
HCD	25.90 ± 0.17	0.212	-32.80 ± 3.04
НСМ	41.97 ± 2.16	0.442	-31.03 ± 3.31
DCD	28.73 ± 0.14	0.246	-36.23 ± 3.03
MCM	27.73 ± 0.33	0.38	-24.03 ± 2.33
QCF	25.36 ± 0.18	0.18	-30.53 ± 0.32
QCW	25.90 ± 0.17	0.22	-35.50 ± 2.55
QCY	25.42 ± 0.34	0.19	-29.73± 2.57
GSH	25.78 ± 0.13	0.19	-34.27 ± 5.09

• Particle size, PdI & Zeta potential comparison from freshly prepared vs. addition of Hg^{2+} (n=3)

No.	Tripeptide-AuNPs ((after	Particle size (d.nm)	PdI	Zeta potential
	addition of Hg ²⁺)				
1.	DCH-AuNPs		60.69±1.57	0.327	-20.03±0.35
2.	HCD-AuNPs		56.25±0.76	0.305	-20.83±0.95
3.	DCH/HCD- AuNPs		79.20±2.50	0.354	-17.53±1.15

- Particle size changes indicated the aggregation level
- Negative surface charge through zeta potential shows the ability to detect positively charged metal ions.
- DCH/HCD-AunP had the largest particle size and highest PdI value highest uniformity of particle aggregation.
- Supported by TEM analysis shown aggregation with Hg²⁺

After addition of Hg²⁺

Surface chemistry optimisation & selectivity to Hg

- Target to find an optimum conditions to stabilize the tripeptide of choice conjugation onto the gold nanoparticle surface, thus enhance the sensing signal.
- Tripeptide candidates HCD, DCH, MCH, HCM
- Mercury ion (Hg²⁺) fixed for all conditions at 100 ppb.

DFT (GAUSSIAN)

 Degree of aggregation (selectivity) for Hg is superior compared to other metals

• Sensitivity of DCH/HCD-AuNPs upon addition of 7 different concentration of Hg²⁺

Validation with produced water

- Real samples were tested using DC/HD-AuNP as shown above gives qualitative indication of mercury spiked in the samples.
- More samples are required to verify the limitation of this nanoprobes.

Conclusion & Way forward

- Mercury presence via plasmonic detection is technically proven, however further investigation is required.
- Moving forward, the following could be further explored:
 - Field testing and validation
 - Sensor miniaturization and integration
 - Selectivity studies to evaluate other heavy metals.
 - Long-term stability and reusability