

Navigating the Changing World of Reserves and Resources in the Context of the PRMS

20 - 21 AUGUST 2024 | BRISBANE, AUSTRALIA

part way

Unconventional Field – Prospective Resources ^ to Reserves per PRMS 2018

Greg Horton and John Hattner Greg Horton Petroleum Engineer, John Hattner Senior VP NSAI

Collaborators Barbara Pribyl, Paul Lyford, Greg Horton, Doug Peacock

Some material is based on slides provided by Creties Jenkins

The presentation material is the view of the collaborators in general, but not necessarily in detail, and not necessarily the view of their employer or SPE. The material is provided to promote discussion amongst the workshop attendees on better understanding of PRMS.

- "Full Project" vs "Ultimate Project(s)" area
- Overview of Process
- ED 1: PRs, Pg, Pd
- ED 2: Result of Discovery Test in Pod A
- ED 3: Results of TUD Process
- Questions!

Key Points

(1) Same as for Conventional accumulation PLUS

(2) Technology under Development (TUD) process *for the Project* likely to be required for Unconventionals

(Note: PRMS 2.4 Unconventionals does not mention this, neither does AG22 Ch10 Unconventional Resources Estimation!)

- Reserves must be based on EsT (Established Technology) for the Project
- CRs and PRs can be based on EsT or TUD for the project
- EsT is not the same as SEC Reliable Technology, it is a "subset"

(3) PRMS 2.4 Unconventionals

- Need for increased spatial sampling density (2.4.0.2)
- Direct technical evidence required for reservoir presence or productivity (2.4.0.3)
- Limited extrapolation from control point (2.4.0.4)
- A successful well test may be required to assign CRs where log and core data and nearby producing analogs have not provided evidence of potential economic viability (2.4.0.4)
- Pilot projects may be needed to define Reserves, which requires further evaluation of technical and commercial viability (2.4.0.4) – this is inadequate - should say Pilot projects may be needed to pass Discovery and/or progress through Discovered Unrecoverable, CRs to define Reserves -> PRMS improvement

Key Points (3/3)

 Deterministic Incremental Method traditionally used BUT really NOT appropriate to comply with PRMS principles

- No account uncertainty of outcome for same low, best and high project scope which is critical for understanding well(s) performance
 - Underlying geological and reservoir uncertainty, AND
 - Uncertainty in applicability and hence range of outcome of applied recovery technology (ie TUD) (which is a precursor to learning curve benefits)
 - Use of pilots or field trials; typically, each pilot or field trial relates to a separate investment decision for potential development around the pilot which is a separate <PRMS> project (pod)
 - The success situation of these, may lead to expansion of the area considered for development
- Inconsistency with PRMS as project moves through PRMS framework
 - Especially use of "concentric rings" P1, P2, P3, C1, C2, C3 to describe maturity
 - Better to define project(s) in terms of pod(s) -> same # of wells -> range of recovery
 - Facilitate investment decisions suitable for "pilots" and up to "developable" areas

"Full Project" vs "Ultimate Project(s)" area

What is meant by the term "full project"?

Jim Ross (author of Chapter 2, PRMS AG11 Applications Document) has clarified the term "full project" area as follows for unconventional accumulations:

If a pilot project is planned and budgeted, discovered recoverable quantities from the full project, to the extent that the results of a successful pilot test can reasonably be assumed to be applicable in areas away from the specific area that is subject to the pilot test, may be classified as Contingent Resources.

- This means there is some latitude in designating a Contingent Resources area using a planned and budgeted pilot project.

- However, this decision should be based on the quality/quantity of the available data, a good understanding of the parameters controlling production, and the distribution of these parameters in the play area

It is unlikely that a "full project" area initially is the "ultimate project(s) area" -> discovery, step out, appraisal including TUD via pilots typically required

Extending an analogy to another area without a positive TUD result from the original area should be avoided.

Discovery -> CRs based on Planned & Budgeted Pilot(s)

A relatively small "Full Project Area" (ie POD) is assigned given that the 2D seismic and well data surrounding the discovery well () are of poor quality

A planned and budgeted pilot project (*) is located within the assigned CRs area:

Traditional Method: Incremental Method: 3C CR area defined number of wells based on the applied recovery technology, concentric rings representing 1C, 2C, and 3C estimates of CRs.

OR

Alternate Method: Scenario Method:

Pod Area based on the same number of wells for 1C, 2C, 3C with a range reflecting the underlying geo and reservoir uncertainty AND uncertainty in the effectiveness of the applied recovery technology.

Traditional Method -> Incremental Method

"Full project area"

- The technique is referred to as a deterministic (incremental) method
- The red square is the discovery well
- The 1C area (red + yellow) contains 25 wells
- The 2C area (red + yellow + green) contains 81 wells
- The 3C area (red + yellow + green + blue) contains 169 wells

Alternate Method -> Scenario Pod Method Spekshop "Full project area" – addresses all prior issues!

- Match size of Pod to 2P Reserves using Incremental Method. Ie 5x5 well spacing
- Keep this constant for 1C, 2C and 3C.
- Probabilistically calculate Low, Best and High recovery (ie "full distribution"):
 - Geo and reservoir parameters
 - Recovery Factors assuming no issues with recovery technology AND
 - Effectiveness of recovery technology
- Determine the success portion, and hence Pd(Trun)
- Calculate Pd(Full) by equating risked means
- Adjust Pd(Full) for other commerciality risk factors

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Other configurations are possible, such as one ring each of 1C, 2C, and 3C Contingent Resources, depending on the evaluator's confidence in how reservoir parameters change away from the discovery well

Alternate Method -> Scenario Pod Method Scenario "Full project area" – eg:

RF range with "no" recovery tech issues eg from simulation

Case	VF_Uncon	v Pod A PF	s potentia	l ED1 -> ~1	pods = 25 wells		Frac Efffective	ness = 0.7-1	, TPS 50								
Wells	25	25	25	25									<u> </u>	ecov	ery te	ch "effe	ctiveness
Area sq km	25	25	25	25		P90	P50	P10	Mean	P1							
Recovery F	actor with	"no" issue	s with app	lied recov	ery technology	0.10	0.14	0.20	0.15	0.27	ie maxim	um recove	ry with no	issues is 2	27%		
Effectivene	ess of Reco	overy Tech	nology			0.70	0.84	1.00	0.84	1.16	ie assum	ed there is	a chance t	that best a	chievable a	cross all Pod w	ells is > 100%
Average ov	erall recov	ery factor							0.12								
			Fu	ll Distribut	tion (Bcf Sales)					Trunca	ated Portio	n of Full Di	stribution	(ie Succes	ss) (Bcf Sale	es)	
Pg	P90	P50	P10	Mean	Pd _{full} * Mean(Trun) X PTPs/Mean(Full)	Expected Outcome Pg = 1	Expected Outcome for given Pg		TPS	P90	P50	P10	Mean	Pd _{TPs} *	Expected Outcome Pg = 1	Expected Outcome for given Pg	
75.0%	29.1	48.6	81.2	52.4	62.8%	32.9	24.7		50	52.5	65.0	93.8	69.5	47.3%	32.9	24.7	
Per Well	1.16	1.94	3.25	2.09					Per Well	2.10	2.60	3.75	2.78				
* F	Pd only inc Considerati	ludes con ion of oth	sideration er commer	of being " ciality crit	economic and m eria and commitr	neeting defin ment will like	ed investment ly reduce thes	t and opera se	ting criteria'								
Reporting p	er PRMS = F	Full Distrib	oution, acc	ompanying	g Pg and Pd												
Comment:	This is ref	lects range	e from disc	overing 1 F	od, recovery effe	ctiveness und	certainty, TPS fo	or incremer	tal pod stan	alone							
	Assumes:																
	Range of 2	25 sq kms	will be disc	covered													
	Uncertain	ty in recov	ery technol	logy													
	TPS of 50 k	ocf															
	Ok for rep	orting per	PRMS?														

Overview of Process

Examining 3 Effective Dates (EDs):

Path through FC4b TUD for the Project:

Criteria (2.1.2.1 A).

ED 1: PRs, Pg, Pd

PRs need to be based on sufficient technical and other information to be credible -> if not justified -> PRs should not be recognized until such information is obtained!

- Such information may be available directly from the subject area (eg existing wells and seismic)
- Adjacent areas
- Beware building too much from "nothing"!

Existing (typically) conventional wells and seismic

FC2: Undiscovered PIIP ⇒ Prospective Resources (PRs), Play, Lead, Prospect

(1) Pick a target formation

- (2) Determine "Ultimate Project(s)" area
 - Remove non-permit area(s)
 - Remove areas Absent, or No productivity
 - -> Ultimate Project(s) area
- (3) Decide recovery process options
- (4) Pick size and location of *initial* "Full Project" areas
 - -> Each "full project" area = <PRMS> Project
- (5) Play Risk elements PRMS does not address "play risk", should it?
- (6) Prospect Risk elements for Unconventional (eg):
 - Pg = Prs x Pch x Psl x Pd
 - •Reservoir (Prs)= Presence & Quality
 - •Charge (Pch) = Maturity and not migration
 - •Seal (Psl) = Top & bottom seals.

•Deliverability (Pdl) = a combination of frackability (brittleness, elasticity, stress magnitude/principle) and ability to deliver to a surface infrastructure (pore pressure).

- (7) Derive PRs for the Ultimate Projects area target zone "full distribution", Pg
- (8) Estimate potentially recoverable quantities from "full project" areas upon discovery full distribution, Pg
- (9) Determine Threshold Project Sizes (TPS)
 - Ultimate Projects Area, Full Projects areas (covering "ultimate projects" and "stand alone")
- (10) Determined Pd's for "full distributions" from Truncated Distributions Pd's (only considering economics in this eg)
- (11) Select recovery technology option to represent PRs and way forward
- (12) Pick location to attempt discovery iteration and decision tree analysis likely required

Ultimate Projects Area

- Note existing wells and seismic

Recovery Process options?

Vertical Frac (VF) wells, or Horizontal Multiple Frac

ED 1: PRs, Pg, Pd (3/7)

For HMF Recovery Process "full project areas", use "Early Phase Scenario 2" per AG22 Fig 10.19:

Fig. 10.19—An example illustration of assigning resources to undeveloped locations in the deterministic incremental approach.

ED 1: PRs, Pg, Pd (4/7)

Recovery Process: Vertical Frac (VF) wells

Ultimate Projects Area:

- 6 x VF "Full Project" are
- 150 well locations
- 150 sq kms
- TPS 100 Bcf Sales Gas
- Pg = 0.75

RF Range – no issues P90 - P10: 10% - 20%

Effectiveness of recovery pr P90 - P10: 0.7 - 1.0

VF "Full Project" areas:

- Based on traditional "2P" area
- 25 vertical frac wells
- 1 km spacing
- Area 25 sg kms
- Will have Low, Best and High estimates
- Stand alone TPS 50 Bcf Sales Gas

Recovery Process: Horizontal Multiple Frac (HMF) wells

Ultimate Projects Area:

- 8 x HMF "Full Project" areas
- 72 well locations
- 144 sq kms
- TPS 100 Bcf Sales Gas
- Pg = 0.75

RF Range – no issues P90 - P10: 30% - 50%

Effectiveness of recovery proce P90 - P10: 0.3 - 1.0

HMF "Full Project" areas:

- Based on "2P" area per AG22 Fig10.19
- 9 horizontal wells with multiple fracs
- 2 km x 1 km = 2 sq kms spacing
- Area 18 sq kms
- Will have Low, Best and High estimates
- Stand alone TPS 50 Bcf Sales Gas

For Initial "full project area" Pod A

Proposed location for

Discovery well Test Project (not required 🔶

in this eg)

TUD Pilot (2 wells anticipated)

ED 1: PRs, Pg, Pd (5/7) – Ultimate Projects Area

Recovery Process: Vertical Frac (VF) wells

Recovery Process: Horizontal Multiple Frac (HMF) wells

- Both look good on the face of "Ultimate Projects Area" recoveries alone
- HMF looks better
 - Should do some cashflow analysis and decision evaluation

What would be the PRs per PRMS, if any of these?

ED 1: PRs, Pg, Pd (6/7) – Pod A TPS 100 Bcf Sales Gas

Recovery Process: Vertical Frac (VF) wells

Recovery Process: Horizontal Multiple Frac (HMF) wells

- > Limited chance of a single pod covering the TPS (100 Bcf) for the Ultimate Projects area
- ➤ HMF is better
 - Should do some cashflow analysis and decision evaluation

> If PRs for Pod A were being reported, which would they be, if any of these?

ED 1: PRs, Pg, Pd (7/7) – Pod A TPS 50 Bcf Sales Gas

SPE Workshop

Recovery Process: Vertical Frac (VF) wells

- > Much better chance of a single pod covering the TPS (50 Bcf) for stand alone
- > HMF is better selected as go forward recovery process basis for estimates
 - Should do some cashflow analysis and decision evaluation

> If PRs for Pod A were being reported, which would they be, if any of these?

ED 2: Result of Discovery Test in Pod A

(1) Discovery Test Unsuccessful
(2) Discovery Test Successful BUT reservoir "non-analogous"
(3) Discovery Test Successful and confirms pre-drill technical viability

FC3: DISCOVERY TEST: Prospect (or Undiscovered PIIP) ⇒ Di

(1) Discovery Test Unsuccessful

- Exclude Pod A from Ultimate Projects area
 - Must be justified if NOT excluded
- Reassess parameters and risking
- Possibly change "full project areas"
- > Evaluate remaining PRs, "full project area" potential, Pg, Pd
- Decide go forward plan

ED 2: Result of Discovery Test in Pod A (2/4 (2) Discovery Test Successful BUT reservoir "non-analogous":

ED 2: Result of Discovery Test in Pod A (3/4 SPE kshop

(3) Discovery Test Successful and confirms pre-drill technical viability (1/2):

FC4b: CRs based on Technology Under Development (TUD) for the Project

If discovery confirms pre-drill technical viability expectations for recovery process

- Check TUD requirements met? -> Yes ->TUD process
- Promote Pod A to CRs Dev Unclarified?
 - > No, better to wait for results of TUD process
 - Especially if pod is FIRST TUD process
- Reassess parameters and risking
- Evaluate remaining PRs (7 pods), "full project area" potential, Pg, Pd
- Ready to implement TUD process

(3) Discovery Test Successful and confirms pre-drill technical viability (2/2):

TPS 50 Bcf Sales Gas

TPS 100 Bcf Sales Gas

- > May report CRs for "full project area" Pod A, though prudent to wait until TUD process results
- Compliant TUD process
- > Distribution the same for each TPS, but Pd lower, 0.4, for TPS 100 Bcf vs 0.83 for TPS 50 Bcf
- Assumes same parameters and recovery process effectiveness as pre-drill estimates
- Redo remaining PRs per ED1 (parameters and risking updated as appropriate)

ED 3: Results of TUD Process

FC4b: CRs based on Technology Under Development (TUD) for the Project

- ➤ 4 broad outcomes may occur for the "Pod"
- Each have implications for placement in PRMS
- > And next steps ...

Pod A Result	Result > Ult Projects TPS	Result > Pod TPS	Technically Successful	Technically Unsuccessful
(i) Commercially Viable for Ultimate Projects area	✓	1	√	
(ii) Commercially Viable for Pod		\checkmark	\checkmark	
(iii) Technically Successful			\checkmark	
(iv) Technically Unsuccessful				×

Recovery Process: Horizontal Multiple Frac (HMF) wells

(i) & (ii) "Commercially viable"

- (iii) Technically Successful
- (iv) Technically Unsuccessful

Rework all estimates and risking –> follow-up discovery test and pilots

Technically Unsuccessful "full project area" should remain "discovered unrecoverable" or be relegated to "discovered unrecoverable", especially if tried "twice"

- If not relegated, must be justified;

 - If TUD no longer active, or, not supported by direct evidence or, requires unreasonable improvements in commercial conditions or technology to commercialise
-> must be relegated to "discovered unrecoverable"

Questions!