

Navigating the Changing World of Reserves and Resources in the Context of the PRMS

20 - 21 AUGUST 2024 | BRISBANE, AUSTRALIA

An Integrated "Model-Based" Methodology to Construct Type-Well Profiles in Unconventional Reservoirs

Diana Marcela Mancilla Roldan

DeGolyer and MacNaughton

EST. 1936

dmancilla@demac.com

Presentation Outline:

- Introduction
- Methodology for constructing type well profiles
- Diagnostics of production performance
- Utilization of rate-transient analysis
- Incorporation of fracture modeling
- Production profiles based on specific well completions and spacing
- Summary and conclusions

Introduction:

Challenges Associated with Engineering Aspects of Unconventional Reservoirs

Introduction:

Type Well Profiles

- Type well profile is a representation of future production rates of an undeveloped (well) location.
- Type well profiles are critical for estimating undeveloped reserves/resources and capital allocation.
- Type well profiles are typically based on a statistical measure (e.g., "average") of individual rates from representative producing wells ("well groupings").
- Well groupings are generally based on:
 - Reservoir, fluid and rock properties. Well spacing and completions
- Major limitation of the standard approach:
 - Absence of "representative" well groupings for the future undeveloped locations.
 - o Development plans different than historical field production.

Introduction:

Phases of Unconventional Field Development

Mature Phase

Consists of many wells, most with long term history.

Days

6

17513

SPE

Reference:

Methodology for constructing type well profiles:

Early Phase of Development

Methodology for constructing type well profiles:

Using Model-Based Approach

- Production diagnostics for identifying flow regimes and characteristic behavior.
- Rate-transient analysis is performed on representative well(s).
- Appropriate model selection and uncertainty analysis.
- Hydraulic fracture modeling (simulation) to characterize fracture geometry.
- Once calibrated production profiles are generated based on a specific completion design and well spacing.

Diagnostics of Production Performance:

Flow Regimes and Characteristic Behavior

Discussion:

- Wells may be grouped by specific characteristics such as geology/location, PVT behavior, completion parameters, etc.
- It is possible to use a metric for data normalization (e.g., lateral length, cumulative production at 6 months, etc.)
- Almost unique character of the group is observed after normalization.

- Flow regimes/behavior exhibited by production data is identified.
- Identified character based on diagnostics is utilized for the interpretation and modeling.

Diagnostics of Production Performance:

Representative Well(s)

Discussion:

- If production diagnostics indicate characteristic behavior for a group of wells then the group production behavior can be described by a specific solution (analytical, numerical or empirical).
- Characteristic behavior can be translated into a time-rate type well profile.

Utilization of Rate-transient Analysis:

Model Uncertainty

Utilization of Rate-transient Analysis:

Model Orientation

Multi-Fracture Horizontal Well (MFHW) Overview

Primary Model Parameters for Calibration:

Permeability (k)

- → Major Unknown
- Fracture half-length (Xf)
- Fracture height (hf)
- Number of Fractures (nf)
- Skin Factor (s)

- \rightarrow Parameters will be tied to completion efficiency
- \rightarrow Generally last to calibrate or refine the history match

Assumptions / Remarks / Issues

- 1. Non-uniqueness: more than one answer satisfying solution.
- 2. Uncertainty: No clear consensus on values for model parameters.
- 3. Infinite conductivity.
- 4. Single phase (dry gas) simpler/cleaner approach. Multiphase (more complex).
- 5. Petrophysical and fluid properties are direct inputs.
- 6. Drainage area may be limited to actual well spacing.
- 7. No stress-dependent properties.
- 8. No dual porosity / permeability
- 9. Remember this is a model, it is likely wrong

Utilization of Rate-transient Analysis:

Ru

Addressing Non-uniqueness

Procedure:

- Investigate the driving factors predominant flow regimes
 - Understand ranges on permeability
 - Ο Incorporate completion design

Discussion:

- Performed multiple RTA calibrations for each well to address non-uniqueness
- $A_c k^{1/2}$ is kept relatively constant for all solutions
- Results are plotted to create a "solution space"

Run					Sample Results Table			
	INPUTS		OUTPUTS / TUNING PARAMETERS			CALCULATIONS		
	Frac Height, <i>h</i> (ft)	Permeability, k (nD)	Number of Fractures, n _f (dim.less)	Fracture Half Length, x _f (ft)	Skin, s (dim.less)	Cluster Efficiency, n _f /n _{f,total} (dim.less)	Fracture Surface Area, A _o (ft ²)	Mode A _o k ¹ (ft ² md
a1	50	50	25	1700	0.00141	57%	8500000	6010
a2	50	100	19	1550	0.00128	43%	5890000	5890
a3	50	200	15	1400	0.00286	34%	4200000	5939
b1	100	50	25	840	0.00147	57%	8400000	5939
b2	100	100	19	770	2.71E-03	43%	5852000	5852
b3	100	200	15	670	0.00541	34%	4020000	5685
c1	150	50	25	555	0.00205	57%	8325000	5886
c2	150	100	19	525	0.004848	43%	5985000	5985
c3	150	200	14	475	0.00905	32%	3990000	5642

Sample "Solution Space"

Incorporation of Fracture Modeling:

Petrophysics and geomechanics are used to generate the model.

Each stage is simulated by matching treatment pressures.

Fracture properties are the main output.

Petrophysical and Geomechanical Properties from Logs

Maximum fracture height shown along the lateral

Depth (ft)

True Vertica

Measure Depth (ft)

Incorporation of Fracture Modeling:

Illustrative Example (UrTEC 3869654) Original Completion Parameters:

- 17 stages
- 80 bpm slurry rate
- 2 clusters/stage
- 214-ft cluster spacing
- 75,000 lbs/cluster Proppant Loading 700 lbs/ft
- 7,200 bbl/cluster Fluid Loading 70 bbl/ft

Model Calibration: Matched modeled to observed

- ISIP
- Treating pressure
- Post-frac pressure decline
- Frac geometry (iterative from RTA)

Well A – Fracture Conductivity

Representative Hydraulic Fracture Model, displaying post treatment fracture conductivit

- Propped xf range: 646 740 ft
- Propped h range: 60 65 ft

Integration:

Results:

- Selected RTA calibration that most accurately represented the frac model results
- Integration of the frac model helps decrease uncertainty of parameters
- Characteristic solution created from this RTA calibration

Incorporation of Fracture Modeling:

Discussion:

- Solution spaces were created for each analyzed well based upon the multiple calibrations
- Every point on these graphs represents a single calibration
- Calibration for the characteristic solution was determined using geological data, RTA and frac model results
- Characteristic model ("type well profile") is created by utilizing workflow results

Production profiles:

Based on specific well completions and spacing:

Time

Production profiles:

Based on specific well completions and spacing:

Modeled treatments are evaluated with different well-spacing configurations

Tighter spacings can cause well's fractures to overlap and steeper decline

Type Well Profiles based on Well Spacing

Summary and conclusions:

- This work provides a comprehensive methodology to construct type-well profiles in unconventional reservoirs incorporating time-rate-pressure data along with reservoir properties and well completions.
- The application of this methodology in emerging plays with short production history has considerable potential with resource classification and development planning.
- The incorporation of history-matching the as-pumped conditions from fracture modeling eliminates the uncertainty associated with fracture geometry obtained from model-based analysis.
- The incorporation of a model calibrated by rate transient analysis and fracture modeling is able to capture implied flow behavior and predict potential changes based on various development considerations.
- The calibrated model is used to generate future production profiles based on a specific pressure drawdown, well completion, and well spacing.
- The resulting profiles can be translated to a standard decline-curve equation (e.g., modified Arps' hyperbolic decline) to be used in economic analysis.
- Various economic runs can be performed to investigate favorable development conditions based on a specific well spacing and completion.